
Selenoprofiles 3 manual

Pipeline for profile-based protein finding in genomes

!

contact: marco.mariotti@crg.eu

Last update: May 16th 2013
 selenoproÞles version 3.0

1

Table of contents

Introduction! 4

Installation! 5

Getting started! 6

The pipeline in summary! 7

Building a proÞle! 8

ConÞguration Þle vs command line! 10

The results folder! 12

Output options! 13

The results database! 13

Inspecting results: .p2g format! 14

Searching multiple targets! 15

The SelenoproÞles pipeline! 18

Psitblastn! 18

Exonerate! 19

Genewise! 21

Improving predictions! 22

Prediction program choice! 23

Labeling! 24

Final Þltering! 24

Removing inter-family redundancy! 25

Running selenoproÞles in parallel! 25

Advanced usage! 27

The p2ghit class! 27

Custom output: option -fasta_add! 29

Actions! 29

Blast Þltering! 30

2

AWSI Z-score based Þltering! 31

Other Þltering functions! 33

Tag blast Þltering! 33

GO score Þltering! 34

Integrate your own code: option -add! 34

Custom prediction features! 37

Appendix 1: guide to proÞle building! 40

Appendix 2: full list of operations! 42

Appendix 3: links and references! 43

Appendix 4: troubleshooting! 44

Blast error! 44

Genewise errors! 44

!

! If this program is useful to your research, please cite:

Mariotti M, Guig— R (2010)
SelenoproÞles : proÞle-based scanning of eukaryotic genome sequences for selenoprotein genes.
Bioinformatics. 2010 Nov 1;26(21):2656-63. Epub 2010 Sep 21

Cover image created with Wordle using the text of this manual - http://www.wordle.net/

3

Introduction

SelenoproÞles is a pipeline for proÞle-based protein prediction in genomes.
The program takes two inputs per run:

- one or more proÞle alignments, representing the protein families to search for,

- a genome (or any other nucleotide database), the target you want to scan.

SelenoproÞles runs internally a number of "slave" programs, whose predictions are
analyzed and combined. The main programs used are: blast (psitblastn ßavor, from blastall
ncbi package), exonerate (utilized in protein-to-genome mode) and genewise. All these
programs, although different in the algorithm and in speed, are based on the same
principle: the target (nucleotide) is translated in all possible frames, and the query (protein)
is aligned to such translated sequences, searching for high-scoring matches. The
procedures of exonerate and genewise include also the prediction of splice sites, to bridge
the matches into more complete, multi-exonic gene predictions.
SelenoproÞles use blast as Þrst step, and attempts to reÞne its predictions with exonerate
and genewise. It then processes the candidate gene structures, Þnally producing non-
overlapping gene predictions for all input proÞles.

The main purpose of selenoproÞles is the accurate search of a set protein families in a
wide range of sequenced species. Nonetheless, it has been used also for the complete
annotation of genomes. In this case a comprehensive, large set of input proÞles has to be
provided. A virtue of selenoproÞles is ßexibility: its workßow can be substantially modiÞed
using options and conÞguration Þles, allowing in particular a Þnely tuned Þltering of results.
Also, the user can also easily plug-in its own code for speciÞc annotations and analysis.
Finally, the selenoproÞles package includes a few additional programs to collect and
visualize the results of searches along the phylogenetic tree of target species.

SelenoproÞles can be used with any input protein family, but we initially developed it for
selenoproteins. These peculiar proteins contain a selenocysteine, the 21st amino acid.
Selenocysteine (Sec, or U) is inserted in correspondence to speciÞc UGA codons, which
normally signal translation termination. In selenoprotein transcripts we Þnd speciÞc
secondary structures (SECIS elements), which targets a speciÞc UGA to be read as Sec
instead that as a stop. Since selenoproteins possess this peculiar feature (recoding of
speciÞc stop codons), normal gene prediction programs fail to predict them. SelenoproÞles
in contrast is able to correctly include selenocysteine positions, by using technical
expedients detailed in this manual. SelenoproÞles includes built-in proÞles for
selenoproteins and other proteins related to selenocysteine, allowing out-of-the-box
prediction of these families.

This manual describes the selenoproÞles pipeline starting from the simplest usage, moving
then to most complex customization methods. It covers almost the totality of selenoproÞles
options. The full list can be inspected running SelenoproÞles --help full.
The pipeline is also described in a paper in Bioinformatics (see references on Appendix 3),
in which we also detail how we validated the method. Note that the paper refers to the
version 1, while here we describe version 3, with several major improvements.

4

Installation

SelenoproÞles can be installed on any unix system with python 2.6 or newer. A python
command line installer (install_selenoproÞles.py) is provided inside the installation
package that you can Þnd at http://big.crg.cat/services/selenoproÞles. The user needs to
take care of the installation of all slave programs: ncbi blast package 2.2.181, exonerate
version 2.0.0 or newer, genewise from the Wise2 package, and also mafft. These
programs have to be available in the bash environment for the installer to work. Find useful
links for their installation in Appendix 3. If you experience any problem with their
installation, visit Appendix 4, troubleshooting. SelenoproÞles needs also the ncbi taxonomy
database, to assign species names. The installer will attempt to fetch if it is not provided.

SelenoproÞles provides a wide range of Þltering functions, some of which scan a protein
database (ncbi nr) to search the candidate sequences with blastp, and parse results to
infer the goodness of the prediction. Since some of the built-in proÞles for selenoproteins
and Sec machinery feature this kind of Þltering, the database is needed for their use. The
blast nr database is large (>3 Gb) and it may take a long time to download it.

If you plan to scan for your custom families, and you do not need to use the built-in
proÞles, you may want to skip this step, and perform a minimal installation (python
install_selenoproÞles.py -min). The installation script skips the download of a GO
annotation of nr sequences, and skips the system search for the program SECISearch3,
an external program for the prediction of SECIS elements, secondary structures peculiar to
selenoproteins.

If instead you plan to use selenoproÞles to scan for selenoproteins and Sec machinery,
you have to perform a full installation. If you already have ncbi nr on your system, you can
link it using installer option -nrdb (see install_selenoproÞles.py --help).

After installation, you can test it using script test_selenoproÞles.py, located inside the
installation directory. This script runs the pipeline on a few test sequences and checks that
the output is as expected. You can also run anytime selenoproÞles -test to perform a
presence check of all slave programs and modules used either by selenoproÞles, or by the
additional programs included for visualization.
In particular, selenoproÞles_build_proÞle.py requires Pylab (http://www.scipy.org/PyLab) to
plot the sequence identity characteristics of proÞles, and selenoproÞles_tree_drawer.py
requires ete2 (http://ete.cgenomics.org/) for tree-based visualization of results across
species. Although none of this two modules is compulsory, we strongly suggest to install
ete2 for projects aimed at searching certain protein families in a wide range of species, to
conveniently visualize results as an annotated species tree.

5

1 All 2.2.x versions are expected to work. The newer versions, called blast+, will not work

Getting started

This chapter will cover the basic use of selenoproÞles. To begin, we will use a proÞle
alignment included in selenoproÞles package. LetÕs get practical. Let's say that we want to
scan the genome of the species Macaca mulatta, contained in the Þle /db/genome.fasta,
for the built-in AhpC proÞle.
Here's a basic command line:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p AhpC

The Þrst argument of selenoproÞles is the folder where all results will be stored. If not
existing, it will be created. It will be called results folder from now on.
The second argument, provided with option -t, is the target Þle . A multi-fasta Þle must be
provided. This is formatted with formatdb and fastaindex to be used by the slave
programs. The Þle name, without the extension, is used for naming in selenoproÞles and
will be referenced as the target name (in the example, genome). Each short title (deÞned
as the Þrst word in a fasta header) must be unique, and no empty sequence should be
present. The option species (or -s) allows to specify to which organism the genome
belongs to. The species name provided will be searched into the ncbi taxonomy database,
from where a taxid will be derived. The deÞnition of the species is highly recommended but
not compulsory: if none is speciÞed or it is not found in ncbi, the species will be set to
unidentiÞed. Note that the combination of species name and target name must be unique
in a given results folder.
The other key argument to the program is the proÞle , or the proÞles, that will be searched
in the genome. If none is speciÞed, the list of proÞles is read from the conÞguration Þle,
which defaults to the selenoproteins and Sec machinery families. The option -proÞle (or -p
or -P) can accept multiple arguments, that must be comma separated with no space
within. Each such argument can be the name of proÞle (which is searched into the proÞles
folder), the path to a proÞle fasta alignment, or a keyword indicating a list of families
deÞned in the main conÞguration Þle. When a family alignment is provided for the Þrst time
to selenoproÞles, its proÞle is built on the ßy (see building a proÞle).
For example, to scan the same genome with two custom proÞles alignments you can use:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" \
 -p /somewhere/profiles/family1.fa,/somewhere/profiles/family2.fa

Or alternatively, deÞning the proÞles folder in the command line:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta"
 -profiles_folder /somewhere/profiles/ -p family1,family2

By default, selenoproÞles executes the full pipeline. The Þnal output Þles will be found
inside the results folder, inside the target subfolder, in a folder called output. For the
example above, this folder would be:

results_folder/Macaca_mulatta.genome/output/

6

The pipeline in summary

The pipeline workßow is detailed in the next section, and it is here summarized (see also
Þgure below). The program psitblastn is used with a PSSM derived from the proÞle
alignment to identify matches in the target genome. These matches are then used, through
the two splice alignment programs exonerate and genewise, to deduce the exonic
structure of the candidate genes. The predictions of these three programs are analyzed to
choose one, which is then labelled through a dedicated procedure.
Through the entire pipeline a number of steps are performed to Þlter out likely false
positives and to keep the number of potential candidates under manageable levels. There
are three layers of Þltering: at the top the blast Þltering, which controls how many gene
candidates will be processed. Then the (p2g) Þltering and (p2g) reÞltering, both of which
are at the end of the pipeline. All Þltering steps are user deÞnable, which can create Þlters
adapted to his/her protein family of interest. We provide a sensible default Þltering for user
input families: each alignment is examined and, based on its sequence conservation, a
similarity threshold is chosen. This means that a very conserved proÞle will output only
very similar sequences. Also, when multiple proÞles are searched, overlapping matches
are assigned to one or the other family based on sequence similarity.
For selenoprotein families, the program SECISearch3 (if installed) is also used to identify
suitable SECIS elements downstream of the coding region of the candidate selenoprotein
genes. The workßow of selenoproÞles can be easily customized to perform similar
operations: running custom code for speciÞc gene candidates, then storing and outputing
genomic annotations (see !custom features in the advanced usage section).

Graphical summary of the selenoproÞles pipeline.

7

SelenoproÞles normally performs the full pipeline, taking care of skipping the steps
executed previously. The steps of selenoproÞles are: blast, exonerate, genewise,
prediction choice, prediction Þltering, output, denoted respectively by the step-options -B -
E -G -C -F -D -O (see Þgure). After the Þltering step, results are stored in a SQLite
database. When selenoproÞles is run, it checks Þrst if the results database contain already
the results, and if it does, it passes directly to the output step. If the user specify any step-
option, the execution of the corresponding step and of all next ones is forced. This is
necessary if you changed parameters or proÞle speciÞc procedures. If for example you
changed some parameter relative to the Þltering phase, you can force Þltering and output
with -F. Important: even when output is forced, selenoproÞles will overwrite previous
output Þles, but it will never delete any. This may lead to overlapping predictions in the
output, thus we recommend to always delete the output Þles before any second run on a
certain genome. For the full chronological list of operations performed by SelenoproÞles,
see Appendix 2.

Building a proÞle

A proÞle alignment is a set of aligned sequences which allows to Þnd and predict genes
that Þt in it. This source of information is used in different forms by the slave programs to
Þnd regions of homology and model the genes found in the target.
Building a proÞle alignment means formatting it to be used with selenoproÞles. You just
need a sequence alignment named after your family, with only alphanumeric characters or
underscores. The only format accepted is fasta (aligned, with gaps as Ò-Ó). The title names
must have a unique starting word.
When you provide a fasta Þle as proÞle argument, selenoproÞles will attempt to build it with
default options. Optionally, you can use the script selenoproÞles_build_proÞle.py (located
inside the installation directory) to build the proÞle before running selenoproÞles. This
script allow to control proÞle-speciÞc parameters and procedures, using the library of
functions described in this manual. It also provides other utilities, such as a tool to trim
redundant sequences. For fast runs, alignments should be trimmed to less than 100
sequences. Small proÞles are also discouraged, since the variation in proÞle sequence
similarity is an important determinant for Þltering. A minimum of 10 sequences is
suggested. For a guide to build a good proÞle, see Appendix 1.
When a proÞle is built, its sequences are reordered (overwriting the input Þle) and two Þles
are produced: a .proÞle_data Þle, containing data derived from its sequences for lazy
computing, and a .conÞg Þle, with all the non-sequence information associated to this
proÞle. The sequences are ordered based on ÒcompletenessÓ respect to the whole proÞle.
The .conÞg Þle can be inspected and edited with any text editor to modify the proÞle
attributes. Its content can vary a lot, since all the attributes that are not found in there are
taken from the selenoproÞles main conÞguration Þle.
The only options in the .conÞg Þle that the user typically wants to check are the Þltering
procedures. By default, a loose blast Þltering is used (evalue < 0.01). For p2g Þltering, only
predictions spanning at least 40% of the proÞle length (or longer than 60 aminoacids) are
kept. In the last layer of Þltering (p2g reÞltering), the AWSI measure is evaluated. As
explained later (see AWSI score), this method computes a score of average similarity of
the candidate with all proÞle sequences, and compares it with the average similarity within
the proÞle itself. In this way, very conserved proÞle alignments will output only very
conserved genes. The user can modify the Þltering procedures by adding (or editing) lines
in the proÞle .conÞg Þles. It is also possible to edit the default values in the main
conÞguration Þle, affecting all proÞles with no procedures deÞned in their .conÞg Þle.

8

For example, to tighten up the blast Þltering for a certain family, you can include this line in
its .conÞg Þle:

blast_filtering = x.evalue < 1e-8

To modify the default p2g_Þltering for all proÞles, Þnd and edit the line corresponding to
this in the pipeline main conÞguration Þle (selenoproÞles.conÞg):

p2g_filtering.DEFAULT = x.coverage()>0.5 and x.label != 'pseudo'

This will require the predictions to span at least half of the proÞle width, and to possess a
label different than pseudo. A single label is assigned to each result during the pipeline
workßow. The labeling procedure can also be customized (see option -add section). By
default, there are only two possible labels: pseudo (assigned to all results with in-frame
stop codons, or with insertions or deletions creating frameshifts), and homologue
(assigned to all others).

Other elements in the proÞle conÞguration Þle
LetÕs inspect an example of a built-in proÞle: AhpC. Its .conÞg Þle contains:

name = AhpC
queries = all
blast_options = SELENO
exonerate_options = SELENO
genewise_options = SELENO

¥ name: the name of the family. Taken from the input Þle name.
¥ queries: the queries in a proÞle are those eligible to be used with exonerate and

genewise. In a well curated, clean alignment, all sequences are queries. The value of the
queries attribute can accept various formats (see selenoproÞles_build_proÞle.py --help),
but normally you wonÕt need to change it from its default value, all. Just for
selenoproteins, it is important to take particular care on the alignment of the position(s)
with selenocysteine. Thus, by default a sequence is excluded from the queries if it has
no residue aligned to the position of selenocysteine in the alignment, or to any of them if
there are many such positions.

All other elements may or not be present in the Þle. In the case they are not, they are set
to the defaults speciÞed in the selenoproÞles main conÞguration Þle. All these options can
be controlled by keywords. Keywords are deÞned in the main conÞguration Þle, in the form:

option_name.KEYWORD1 = value

This sets the keyword KEYWORD1 for the option called option_name. This will allow you
to refer to this keyword in any proÞle conÞguration Þle when deÞning that speciÞc option.
For example, in the main conÞguration Þle you have this line:

blast_options.SELENO = -b 5000 -F F

which allows the proÞle conÞguration Þles to bear this:

blast_options = SELENO

This tells the program that it must refer to the keyword SELENO for the blast_options of
this proÞle, which is translated to the value: -b 5000 -F F

9

This and some other elements in the proÞle conÞguration Þles are program options .
These can be recognized by their sufÞx _options. These are basically strings which will be
concatenated to the command line when the corresponding program is run: blast
(psitblastn), exonerate, genewise or tag_blast (when a tag_score or GO_score method is
called). SELENO is set as the value of all program options when at least a selenocysteine
(U) is detected in the alignment. This allows to use speciÞc scoring schemes for these
columns.
We have already seen examples of another type of proÞle conÞguration element, the
Þltering procedures . These can be recognized by their sufÞx _Þltering. All Þltering
procedures inside selenoproÞles are written in python code and use the variable x to
indicate the prediction to which the Þltering procedure is applied. For advanced Þltering,
you should see the advanced usage section to understand and be able to use its syntax.
There are three types of Þltering: blast_Þltering (applied to all blast hits to decide which
ones will be considered), p2g_Þltering and p2g_reÞltering (both applied as a Þnal Þlter to
decide which predictions will be output).
Filters represent the most important non-sequence information layer of a proÞle. As a rule
of thumb, when you use a new proÞle you may leave the Þlters as defaults and run
selenoproÞles a Þrst time. Then, inspect the results and change them to calibrate your
proÞles, then rerun selenoproÞles (removing output Þle and using step option -F). You will
learn how to create Þlters suitable to your protein family in subsequent sections.
There are more elements that can appear in a proÞle conÞguration Þle. These will be
treated later during this manual as their use is explained: max_blast_hits_number,
clustering_seq_id, max_column_gaps_for_blast_query, tag_db, gi2go_db, tags, go_terms,
neutral_tags.

ConÞguration Þle vs command line

The conÞguration Þle contains all the settings of selenoproÞles, and it can used for a deep
customization of its behavior. In selenoproÞles, all options can be speciÞed in the
conÞguration Þle or in the command line, with the latter overriding the former default
values.
Options in the conÞguration Þle have the form
option_name = value

while in the command line they have the usual form
 -option_name value 2

These are the system settings options in the conÞguration Þle:

¥ temp = folder

This will be used for the temporary Þles produced during the workßow. Actually, a subfolder
with a random name is used, and deleted at the end of the computation. You should
choose a temporary folder with free space at least of the size of the target Þle.

¥ save_chromosomes= 1 / 0

When active, subfolders are created in the temp folder to unpack the multifasta target Þles
into single fasta Þles. Only the necessary chromosomes (or contigs) are extracted.
Following principles of lazy computation, these Þles are saved and reused when
selenoproÞles is run again on the same target. If you turn this option off, the single fasta
Þles will be instead written in the random name subfolder and deleted at the end.

10

2 To catch option values of multiple words in command line, use double-quotes to delimit them:
-blast_options " -a 4 "

¥ proÞle = proÞle_name/set_keyword/Þle

The keyword proÞle in main conÞguration Þle denotes the default set of proÞles searched,
deÞned as described here. The default value is eukaryotic, which is a keyword for all
eukaryotic built-in proÞles.

¥ proÞles_folder= folder

As said, you can provide the proÞles list to be searched using directly paths to alignment
Þles, keywords for set of families, or family names. When you use family names, this is the
folder where the alignment Þles named after them are searched for. If you want to use a
set of custom proÞles, you should create a folder for them and set this option to point it.

The main conÞguration Þle is the place where keywords are deÞned. Keywords can be
used for the categories presented in the last chapter, for proÞle speciÞc parameters and
procedures. ThereÕs an additional element that use a keyword logic: the set of families.
families_set.machinery = sps,sbp2,pstk,secp43,SecS,eEFsec

This line in the conÞguration Þle allows to use the word machinery as a -proÞle option. This
will be unpacked into the list of families on runtime. For a very large set of input proÞles,
we recommend to use option -fam_list that overrides -p (or -proÞle) option.

Other options found in the conÞguration Þle are:
three_prime_length=3000

This is the length of the sequence cut when the method three_prime is called. For
selenoprotein families, this is the width of the region downstream the prediction where the
SECIS is searched for. The option Þve_prime_length is not present in the default
conÞguration Þle, but it can be set by the user on runtime or written in the conÞguration Þle.
This is necessary only if the output Þve prime is active.
blast_opt = -a 7
exonerate_opt =
genewise_opt =

The _opt program options are concatenated to the command line when using slave
programs are run, exactly as _options program options in the proÞle conÞguration. The
difference between them is that the former are always used, while the latter can be set for
every proÞle. In the example, the option -a for blast allows to specify the maximum number
of CPUs to be used for computation. This will be used for all psitblastn searches.
exonerate_extension = 200000
genewise_extension = 100
genewise_tbs_extension = 10000

These parameters are used for when extending the seed alignment provided to the
exonerate or genewise routines, described in the next section.
species_library = /somepath/names.dmp
GO_obo_file = /somepath/gene_ontology_ext.obo

These two options tell the system where the reference Þle for the species names and the
GO annotation Þle is located. The Þrst is compulsory present on your system, the second
is not.
Some lines in the conÞguration Þle start with ACTION:
ACTION.pre_choose._improve1 = if x.prediction_program()=='blast': x.remove_internal_introns()

This deÞnes an action. Actions are operations that are run on every prediction. They may
serve different functions. Actions are performed at a certain point during the workßow,
deÞned by their category (in this case pre_choose). Some actions are active by default to

11

improve the predictions and are covered in the improving prediction chapter of the next
section. You will learn more on actions (including how to write them) in a later chapter.
There are many more options, some of which will be mentioned later. The full list of
options can be obtained by running selenoproÞles with --help full

The results folder

The results folder contains all Þles produced by selenoproÞles. A single folder can store
the output data for multiple targets. For each one, a subfolder for target is created
concatenating with a dot the species and target names (e.g. Homo_sapiens.genome).
Think to the results folder as a working environment for a project that include searching
multiple proÞles in several species, or also in several targets for the same species (for
example, genome and transcriptome).
The content of each target folder will vary depending not only on the results of the search,
but also on the options speciÞed by the user.
In its most complete form, the target folder will contain the Þle:

¥ results.sqlite database storing all Þltered results on this target

and the folders:

¥ output! contains the output Þles of selenoproÞles
¥ blast! ! contains the psitblastn output Þles
¥ exonerate ! contains the exonerate output Þles
¥ genewise ! contains the genewise output Þles
¥ prediction_choice contains the output Þles for the prediction choice/labelling step
¥ Þltering! ! contains the output Þles for the Þltering step
¥ tag_blast! ! contains the output Þles of the tag blast, if used (see tag blast)

Inside these folders, Þles are named with a preÞx for the proÞle name. Exonerate and
genewise each produce a Þle for each blast hit satisfying the Þltering conditions. Here, the
Þle names are composed adding to the proÞle name a index linked to a blast hit (example:
fam.1.exonerate). Additionally, these Þles are contained in subfolders of the exonerate
folder named as each proÞle, to avoid having too many Þles in single folders when tons of
hits are found by loose proÞles. In the output folder, Þles names contain also the label
assigned to each result, followed by the Þle format (example: fam.1.selenocysteine.gff)

Example: Þles produced searching SelM (proÞle name) in the genome (target name) of
Macaca_mulatta (species name).
results_folder/info_target.txt
results_folder/Macaca_mulatta.genome/blast/SelM/SelM.psitblastn.1
results_folder/Macaca_mulatta.genome/exonerate/SelM/SelM.1.exonerate
results_folder/Macaca_mulatta.genome/genewise/SelM/SelM.1.genewise
results_folder/Macaca_mulatta.genome/prediction_choice/SelM.tab
results_folder/Macaca_mulatta.genome/filtering/SelM.tab
results_folder/Macaca_mulatta.genome/output/SelM.ali
results_folder/Macaca_mulatta.genome/output/SelM.1.selenocysteine.p2g

If you plan to run selenoproÞles massively, you may want to delete the intermediate Þles
that it produces to avoid an excessive use of disk space. All subfolders listed above can be
deleted; as long as results have already been stored in the results database,
selenoproÞles will be able to retrieve the desired predictions and produce output Þles.
When run with option -clean, selenoproÞles will delete all such subfolders apart from
output/ at the end of the computation.

12

Output options

As you see in the above example list, an alignment Þle (SelM.ali) is produced as output.
This fasta formatted alignment contains the sequences of all results found in this target
along with all the proÞle sequences. This is useful to inspect all results found a certain
target, and compare their conservation and spanning respect to the proÞle. The alignment
is computed by mapping each pairwise alignment constituting a prediction (protein-to-
genome, or p2g) into the proÞle alignment. The program mafft is used to realign only
certain columns of the alignment which deteriorate when adding many predictions in this
way.
In the Þle, the fasta headers of the results start with the Òoutput idÓ of the prediction
(Òfamily.index.labelÓ, for example SelM.1.selenocysteine) and contain also other essential
information.
As said, the rest of the output Þles are named after the output id of the prediction plus the
format. The available output formats are:

¥ p2g default output format (explained later in the visualizing results section)
¥ fasta protein sequence
¥ gff genomic coordinates in GFF
¥ gtf genomic coordinates in GTF
¥ cds coding sequence in fasta
¥ dna the full gene sequence, including introns, in fasta
¥ three_prime the sequence downstream of the prediction
¥ Þve_prime the sequence upstream of the prediction (must specify -Þve_prime_length)
¥ introns the sequence of all introns split in a multi-fasta Þle

The desired output formats are read from the options in the command line or the
conÞguration Þle starting with output_: for example if option -output_fasta is active, the
fasta Þles of all results will be produced, and so on. For all these formats, it is possible
alternatively to produce a single Þle containing all results, by adding _Þle to the option and
providing an argument. If for example you want to produce a single GTF with all
predictions, use

Selenoprofiles [...] -output_gtf_file all_results.gtf

In the main conÞguration Þle you can see what Þle formats are produced by default. Out-
of-the-box, the only active output options are output_ali (for the alignment of results along
with the proÞle) and output_p2g. Sometimes, you may also want to use a different output
folder: this can be chosen with -outfolder.
You can deÞne your own output format by writing a method in python, and add it to
selenoproÞles using the -add option (see later option -add).

The results database

At the end of the pipeline, before outputing, results are stored in SQLite database called
results.sqlite, placed inside the subfolder for this target in the results folder. It is possible to
browse through results opening the database Þles with an SQLite browser, although
normally you will not need to. The script selenoproÞles_database.py can be used to query
or modify the database.

13

Inspecting results: .p2g format

SelenoproÞles native output format is the following: .p2g
!
FILE: /results_folder/Gallus_gallus.genome/output/Ahpc_1.4.pseudo.p2g
--
Output_id: AhpC.3.pseudo
---------- -------------
-Species Gallus gallus -Taxid 9031
-Target /users/rg/mmariotti/Genomes/Gallus_gallus/genome.fa
-Chromosome (-) Z
-Program exonerate
-Query name Anolis_carolinensis
-Query range 34-226 length:226 coverage: 0.85
-Profile range 58-289 length:303 coverage: 0.77 sec_position: [99]
-ASI: 0.2521 (ignoring gaps: 0.2708)
-AWSIc: 0.4486 Z-score: 1.06
-AWSIw: 0.4561 Z-score: 1.145
-State kept

------- alignment -------
Query AAQCPLLDAAGEKTPFGTLFRDRKAIVVFVR <---Intron---> HFLUYTCKEYVEDLAKIPKKYLE <---Intron---> DANVRLVVIGQSSP
 || | //|| | / ||| |/| /|||||||| < 435nt > /|| ||||||||||||/|/ ||/ < 1167nt > /|||||/||||||
Target AAYCLVVDADGSRIPFGALYRRQKAIVVFVR NFLCYTCKEYVEDLAKVPRSYLQ EANVRLIVIGQSSY
 ggtttggggggaaactggttaccagaggtgc attttatagtgggcgagcaattc ggagacagagcttt
 ccagtttacagggtctgctaggaactttttg gt ag attgacgaaataatcatcggata gt ag acatgttttgacca
 ccccgggcgcgtgcccgcgcggggccggtgg tcgtcctggtaacgaaccgttaa aatggtattagatt
 *

Query DHIK <---Intron---> PFCHLTGYSHEIYVDPGREIYKILGMKNGETADTPV <---Intron---> QSPHVKSSFLSGHIKSIWRAVFSPAFDF
 ||| < 409nt > ||| ||||/||/|||| |||||/|||| || | | < 197nt > |||||||| | | |/|/|||/ ||||||
Target HHIK PFCSLTGYTHEMYVDPQREIYKMLGMKRGEGNDVSV QSPHVKSSMLLGSIRSMWRAMTSPAFDF
 ccaa cttatagtacgatggccagataacgaaagggaggtg caccgataactgaaaaatagaaacgtgt
 aata gt ag ctggtcgacaatatacagataattgtaggagaatc gt ag tagcatacgtttggtggtggctcgcctat
 ttcg ctctatgtatagtataagattagtcgaatattcaa ggcttaaacgcgcttatggaagtcattcc

Query QGDPTQQGGALILGPG <---Intron---> NQVHFVHLDKNRLDHVPINTVLQLA ! FRAME ! GVQTVNFTQRSQIIDV
 |||| |||| |||||| < 553nt > |/|||/| |/|||||||||/||||| ! SHIFT ! || |||| / |||||
Target QGDPAQQGGTLILGPG NEVHFLHHDRNRLDHVPINSVLQLA 1nt GVNPVNFTNKPQIIDV
 cggcgccggatatgcg aggcttccgaaatgcgcaatgtccg ggacgataaaccaagg
 agaccaaggctttgc gt ag gaatattaaagagtaatctacttatc c gtactatcaacattat
 aacttagaatgcaca ttatttgtttacagtttcttatggga atcaatcacacgttta

------- positions -------
Exon 1 41768514 41768606
Exon 2 41768010 41768078
Exon 3 41766789 41766842
Exon 4 41766274 41766379
Exon 5 41765945 41766076
Exon 6 41765315 41765391
Exon 7 41765266 41765313

-------- features -------
None
--------- 3' seq --------
Total sequence length available downstream >= 6000
Sequence until first stop codon:
TGA
 *

14

The header of the Þle contains the basic information about this gene prediction, and is
pretty self-explanatory. Some numbers are reported: the ASI is the average of the
sequence identities computed comparing the candidate sequence with each one of the
proÞle sequences, and gives an idea of how much it Þts in the proÞle. AWSIc and AWSIw
are analog similarity scores, detailed later (see AWSI score). Their linked Z-score is
obtained by comparing the score of this candidate sequence with the distribution of scores
of the sequences in the proÞles, comparing each one to all others. The default reÞltering
requires the AWSIc Z-score to be greater than -3.
Next in the output Þle, there is a line indicating the attribute State. This is always kept,
unless the -state option (as explained here) is active.
Then, the query-target pairwise alignment constituting the gene structure prediction is
shown. Between the amino acids, bars are used to show the identity | or the similarity / of
the aligned residues. Predicted in-frame stop codons (absent in the example) and
selenocysteine columns in the input alignment are marked below with X and * respectively.
An insertion in the target producing a frameshift is present near the end of the prediction.
When analyzing low-quality genomes, frameshifts and stop codons should be not trusted,
and checked with sequence data from the same organism by a different source, if
available. In this example, the gene structure looks well conserved except for the insertion.
The presence of introns and good splice sites also suggest that this is not a pseudogene.
Thus, this result should be considered a valid gene despite its label pseudo. This is the
reason why by default selenoproÞles does not Þlter out potential pseudogenes. When
working with high quality target sequences, one can decide to Þlter out results with this
label, as shown here.
Next in the Þle, the genomic positions of the exons are reported. The Þrst nucleotide of a
chromosome or scaffold is indexed as 1. The frameshift is considered as a short intron,
dividing the real exon in two.
In the next section, all features found belonging to this predictions are shown. Features
are objects linked to a p2g result, which the user can manipulate to add layers of analysis
to the pipeline, and get custom output here in the .p2g Þle (as explained later).
Finally, the sequence at the three prime of the gene structure prediction is reported, until
the Þrst stop codon. In this example a TGA is found right downstream, indicating that the
coding sequence prediction is complete at the 3Õ.

Searching multiple targets

SelenoproÞles is meant to search for one or more protein families of interest in many
species and compare results. We suggest to use a certain structure for the Þle paths in this
case. The genome sequences of all investigated species should be in subfolders named
after the species, with spaces replaced by underscores. The Þle name of the genome fasta
sequence Þle (or a link to it) should be genome.fa. Example:

/home/genome_links/Drosophila_melanogaster/genome.fa
/home/genome_links/Homo_sapiens/genome.fa
/home/genome_links/Mus_musculus/genome.fa
/home/genome_links/Pan_troglodytes/genome.fa

When selenoproÞles is run on a target, it will format the sequence database Þle creating
Þles such as genome.index, genome.lengths in the same species subfolder. Also, an
advantage of this structure is that selenoproÞles will detect the species name from the
target path, thus option -s is not strictly needed.
After the pipeline has been run, the results of a proÞle in many targets should be inspected
all together. The program selenoproÞles_join_alignments.py searches for the .ali
alignments in the results folder and joins those of the same family into new alignments,

15

which will contain the results in all targets along with the proÞle sequences. In the new
alignment, the title identiÞers corresponding to the predictions look like this:

>family.id.label.species_name.target_name

They are different from those in the previous .ali Þles, in that they contain the species and
the target name as part of the Þrst word, to make each title identiÞer unique. For more
information on selenoproÞles_join_alignments.py, run it with option --help.
Every prediction consists of a pairwise alignment between a proÞle protein query and a
nucleotide target. The new, joined alignments are produced by mapping all pairwise
alignments to the proÞle. A procedure is used to detect columns that are misaligned by the
process (for example when a insertion is present in many targets, but absent from all
queries), and mafft is used to realign them.
Such procedure of alignment mapping is used to ensure the consistency of the alignment
between the proÞle sequences, no matter how many predictions are present in the same
alignment. Anyway, you may want to realign your results using a more sophisticated tool,
such as T-coffee (http://www.tcoffee.org/).
The resulting alignment of your results can be inspected using a number of programs
(http://en.wikipedia.org/wiki/List_of_alignment_visualization_software).
The joined alignments are also the input to the program selenoproÞles_tree_drawer.py, for
visualizing the results of (potentially) multiple proÞles in (potentially) multiple species with
known phylogenetic relationship. The programs requires the installation of the ete2 tree
python environment (see http://ete.cgenomics.org/), and loads a tree of the investigated
species in newick or phylip format: round parenthesis such as Ò(Ò and Ò)Ó are used to group
lineages that cluster together. With few species, one can manually write such a Þle. For
example the tree for human, chimp, mouse in simple newick would be:

((Homo sapiens,Pan troglodytes),Mus musculus);

If we add rat and fruit ßy, we have:

(((Homo sapiens,Pan troglodytes),(Mus musculus,Rattus norvegicus)), Drosophila
melanogaster);

For searches on wide range of species, it may be useful to derive their rough tree from the
ncbi taxonomy database. This can be done directly at its portal at http://
www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi, or with more automated tools
such as http://github.com/jhcepas/ncbi_taxonomy.
Once you have your joined alignments of results, for example for proÞles AhpC and fam1)
and a species tree containing (at least) your species of interest, you can run:

selenoprofiles_tree_drawer.py AhpC.ali fam1.ali -t species_tree.nw

16

This will open the ete2 graphical environment, showing something like this:

The species tree is indicated on the left. It contains only the species with at least one
prediction. The results for different proÞles are shown as different columns, on the right.
Multiple results for a proÞle in a species are shown as adjacent rows.
Each result is shown as a colored rectangle. A numeric tag at its left indicates its
selenoproÞles numeric id. The color depends on its label, with an hard-coded dictionary for
selenoprotein families: green for selenoproteins, red for cysteine homologues, (...).
For standard, non-selenocysteine containing families (such as fam1 in the example) the
only labels are homologue (yellow) and pseudo (dark grey). The dictionary of colors can
be edited by the user directly inside the script selenoproÞles_tree_drawer.py (see
label_to_color declaration). The rectangle width and position indicates the prediction
coverage and horizontal span when mapped in the proÞle alignment. You Þll Þnd some
additional information printed inside each rectangle: the id of the chromosome (or contig),
and the genomic coordinate boundaries, separated with Ò+Ó for results on the plus strand,
and Ò-Ó for results on the minus strand. Finally, the intron positions as relative to the protein
alignment are shown as vertical white lines. When frameshifts are present, they are shown
as vertical red lines. SelenoproÞles_tree_drawer can be used to produce images or pdf
Þles summarizing even large sets of results, and has many options for customization (see
selenoproÞles_tree_drawer.py --help). When a very high number of results have to be
visualized, certain options can be used to reduce the amount of information per result
shown. The option -a in particular allow to compress the number of results by label:

17

The Selenoprofiles pipeline

Psitblastn

SelenoproÞles uses psitblastn from the ncbi blastall package. This program can be
considered an extension of tblastn, which can use not only a single sequence as query,
but also a Position SpeciÞc Scoring Matrix (PSSM). This allows to utilize the additional
information of the relative proportions of the allowed residues at each position. Normally,
its more famous relative psiblast (extension of blastp) is used iteratively against a
sequence database, building a PSSM with the matches it Þnds. In our use of psitblastn, no
iteration at all is performed, since the proÞle alignment is already provided as input and the
PSSM can readily be derived.

¥ Pre-clustering
We experienced that when a proÞle is broad (i.e., contains sequences quite dissimilar to
each other), the psitblastn search is not very sensitive. For this reason, selenoproÞles
implements a procedure that analyzes the input proÞle alignment in terms of its variability,
and clusters its sequences based on their sequence identity. If the proÞle has a high
variability, then this procedure will produce more than one cluster.
Then, a psitblastn search for each cluster is performed: one PSSM is built from the
sequences of each cluster. Consequently, often there are overlapping blast hits coming
from the searches of different clusters. Those are merged, keeping only the best one for
each overlapping set. The sequence identity threshold can be deÞned for each proÞle
(clustering_seqid parameter), or goes to the default deÞned in the main conÞguration Þle.

¥ Consensus blast query
Psitblastn build a PSSM along the positions of a certain sequence of the proÞle, elected as
the blast query. In our experience, the choice of the blast query has a big effect on the
results of the search. The blast query for each search is not a sequence already present in
the proÞle, but instead a consensus sequence computed on purpose. Its sequence is
given by the most present amino acid at each position of the alignment (or of the cluster, if
more than one is present). There are two exceptions to this. In the positions where at least
a Sec is detected, the blast query always bears a U. The positions featuring a lot of gaps
in the alignmentare skipped. The maximum percentage of gaps for a column depends on
the max_column_gaps_for_blast_query option, either speciÞed in the proÞle conÞguration
or set to the default in the main conÞguration Þle.
For technical reasons, all blast hits loaded in selenoproÞles are transformed so that their
alignments are between the target and a unique query sequence, named the master blast
query. This allows to have a more homogenous kind of data for subsequent computation:
otherwise, blast hits coming from different clusters searches would have different
sequences as query.

¥ Merging exons by co-linearity
After the overlapping hits from the various cluster searches are removed, blast hits are
once again analyzed, and those likely to be exons of the same gene are joined: they are
merged by co-linearity. This means that if a blast hit is downstream of another one, and
also the correspondent portions of the aligned query sequences are one downstream of
the other in the same direction, the blast hits will be merged into a single object (if they are
not too far away). This procedure is done to minimize redundant computation.

18

¥ Blast Þltering
Blast hits are Þltered according to criteria that may be speciÞed for each proÞle. In our
experience, different protein families need very distinct criteria. Some families typically
match a lot of spurious hits, while some others need loose Þlters to Þnd all results. All
Þltering procedures in selenoproÞles are written in python and can be customized by the
user, utilizing a set of methods that are already provided or can be created by the user.
Filtering is detailed in a later section. Blast Þltering is performed actually before removing
redundancy across cluster searches, and also before merging by co-linearity. This is
because merging blast hits requires loading them all into memory, sorting them and
parsing them -- which sometimes would take very long if all blast hits in a output Þle are
considered.
If for some reason you want to inspect manually the blast hits passing the Þlter, you can
use option -Þltered_blast_Þle and provide an Þle as argument, which will be created. The
blast hits inside have not been subject to inter-cluster and co-linearity merging.

¥ Maximum number of blast hits
In selenoproÞles, the computation is largely dependent on the number of blast hits passing
Þltering. For this reason, there is a Þxed maximum number of blast hits which can be
considered. The default value is very loose: 2500. When the limit is passed for a family, a
warning is printed on screen and the workßow follows keeping only the blast hits found so
far. Blast hits are read in the order they are in the blast output Þle. Blast sorts the hits
according to the chromosomes (or contigs) they are located on, ordering the
chromosomes according to the e-value of the best HSP found on them. This way of sorting
is not strictly best-to-worse but it is similar, therefore most likely you wonÕt lose any bona-
Þde gene because you reached the maximum limit of blast hits.
Also, the blast outputs produced searching the different clusters are read in order, with the
cluster containing the highest number of sequences being Þrst. Therefore, the Þrst blast
output read should be the most representative.
In an older version of selenoproÞles, the computation would simply stop if the max number
of blast hits is reached. This behavior can be restored by setting off the relevant option,
with -blast_Þltering_warning 0.

Exonerate

Each alignment coming from the blast phase is used as a seed to run exonerate in the
corresponding genomic region.

¥ Reading and joining exonerate predictions
Given that exonerate is run on a region where a blast hit was found, typically it will give
only a prediction in output. Nonetheless, this is not always the case. For this reason
selenoproÞles considers only the exonerate prediction which, among those in its output
Þle, overlaps with the blast hit used as seed. If more than one overlapping prediction is
present (very rarely), the best scoring is taken.
Also, exonerate generally joins the exons belonging the same gene, including the
prediction of splice sites. Nonetheless, often no good scoring splice sites are found and
such predictions may be found separated. Thus, selenoproÞles attempts to merge the
ÒmainÓ exonerate prediction with the others in the same Þle, using the co-linearity concept
previously mentioned for blast hits.

¥ Cyclic exonerate
Exonerate is run through a peculiar routine called cyclic exonerate (see Þgure below; see
also selenoproÞles paper). This procedure comes in response to the following problem: if
we want to run exonerate on a certain genomic region where a blast alignment gave us

19

the hint of an homology match, we need to decide the boundaries of the region searched
by exonerate. Of course the region provided by blast needs to be extended, but by how
much? Genes sizes are incredibly variable. Taking the biggest size ever observed would
result in a huge amount of useless computation, while on the other side taking an average
would obviously be inappropriate for a fraction of cases.
This routine solves this problem by running exonerate more than once, increasing
progressively the genomic space searched on both sides by a Þxed parameter. The cycle
stops when a run predicts the same coding sequence of the previous one. If the extension
parameter is chosen bigger than the biggest expect intron, the procedure ensures that the
widest prediction possible is achieved.
The cyclic routine runs exonerate on average less than 3 times. Given the high speed of
exonerate, this is more than acceptable also considering that this step is not the most
computationally intensive in selenoproÞles. Also, if the chromosome (contig) is comparable
in size to the extension parameter, the cyclic routine is not performed and the whole
chromosome is used as target. The default exonerate_extension is 200.000 bases.

Schema of the cyclic exonerate routine, from selenoproÞles paper (see references). A
ÒsuperexonÓ represents either a blast hit or more than one merged by co-linearity.

¥ Choosing the best query from the proÞle
Exonerate accepts a single sequence query, but in the pipeline the information of a whole
proÞle of sequences is available. Thus, selenoproÞles chooses the best query sequence in
the proÞle for each candidate gene, by searching the query which is most similar to the
sequence predicted in the target. To do so, the current predicted sequence is mapped to
the proÞle alignment exploiting the query, which is in common between the prediction
alignment and the proÞle alignment. This is done at every cycle, before running exonerate.
At the Þrst run the predicted sequence in the target is given by the blast prediction, and for
each subsequent run is given by the previous exonerate prediction. Before closing the
cyclic routine, it is checked that the best query is still the one that was lastly chosen,
otherwise one more cycle is run.

¥ Modifying exonerate behavior for selenocysteine sites

20

SelenoproÞles was created to predict genes belonging to selenoprotein families. It is able
to do so by using special scoring schemes with exonerate and genewise (blast is used
with a ÒneutralÓ schema at these sites).
When dealing with Sec families a particular scoring matrix derived from BLOSUM62 is
used, in which the alignment of a Ò*Ó character to a stop codon in the target is scored
positively. When the query is chosen from the alignment, its sequence is modiÞed before it
is used by exonerate: all the positions which contains at least one Sec in the proÞle are
changed to Ò*Ó, favoring de facto the alignment of Sec positions to UGA codons3.

¥ Removing redundant exonerate hits
Often, blast hits representing exons of the same genes pass through the co-linearity
merge procedure previously described, mainly because this is kept with loose parameters
to avoid joining accidentally similar, close genes. When this happens, such blast hits are
used to seed cyclic exonerate runs which end up in identical gene structure predictions.
After all exonerate runs are computed, their predictions are analyzed and the redundant
ones are dropped, to save computational time in the genewise phase.

Genewise

Generally, genewise represents the most computationally expensive step in selenoproÞles,
together with blast. Genewise performs basically the same task of exonerate, which is a
tblastn-like alignment including also prediction of splice sites. Nonetheless, this program
does not use heuristics and its running time is considerably higher. When you need to
maximize speed, you can skip the genewise step using option -dont_genewise (the option
-dont_exonerate is also available, but has to be coupled with -dont_genewise).
Genewise is generally run on genomic regions deÞned by an exonerate prediction,
attempting to reÞne them. Such genomic regions are extended by a parameter,
genewise_extension, which is only 100 bases by default, and unlike exonerate the
program is run only once.

¥ Genewise Òto be sureÓ routine
In many cases exonerate does not produce any prediction in output. This happens
particularly for very low scoring blast hits, which cannot be reproduced by exonerate. In
these cases, selenoproÞles performs a genewise routine called Òto be sureÓ, in which a
blast hit (instead of an exonerate prediction) is used as seed of a genewise run. In our
experience this rescues many predictions, but it is very computationally expensive. The
extension of genomic region in the blast hit is deÞned by the genewise_tbs_extension
parameter, which is 10.000 bases by default. One can avoid running this routine using
option -genewise_to_be_sure 0.

¥ The query in genewise
As for exonerate, a single query sequence needs to be chosen to be run with genewise. In
a standard run, the same query used by exonerate is chosen, as this is already the most
similar to the target sequence. When a blast hit is used in the genewise Òto be sureÓ
routine, the best sequence is chosen from the proÞle by maximizing identity with the target,
in the same way it is done in the Þrst cycle of an exonerate routine.

¥ Modifying genewise behavior for selenocysteine sites
For genewise, a trick similar to the one described for exonerate is used when searching for
selenoprotein families. Each query used is modiÞed to bear a selenocysteine (ÒUÓ)

21

3 The alignment of Sec positions to other stop codons is also favored. This is collateral, as no way was found
for exonerate to favor the alignment only to UGA codons. Predictions in which a non-UGA stop codon is
present in-frame would be labelled as pseudogenes.

corresponding to every column of the alignment which possesses at least one. Then, the
translation table normally used by genewise is changed, using one in which UGA is
translated as ÒUÓ. The scoring matrix given to genewise is then a modiÞed BLOSUM62, in
which a ÒUÓ in the target is score positively only to a ÒUÓ in the query.

Improving predictions

In selenoproÞles a few steps are dedicated to the processing of the predicted gene
structures, in order to correct them. All of them are implemented as methods of the
superclass p2ghit, which comprises the classes for blast, exonerate or genewise
predictions (see later p2ghit class). These methods are run through actions (see later
actions) speciÞed in the main conÞguration Þle. You can turn off the improvements
methods by removing or commenting (with #) the corresponding lines in the main
conÞguration Þle.
The Þrst improvement is called remove_internal_introns and is performed only on blast
hits. This method is useful because often blast joins in a single HSP two or more exons,
when the exons are on the same frame and the resulting stretch of unaligned amino acids
in the target is acceptable in terms of scoring. A typical blast hit containing an evident
intron is shown here:

 Score = 100 bits (249), Expect = 4e-20
 Identities = 49/93 (52%), Positives = 59/93 (63%), Gaps = 26/93 (27%)
 Frame = +2

Query: 12 LEPYMDENFITRAFAKMGENPVSVKLIRNKMTG--------------------------E 45
 LEPYMDENFI+RAFA MGE +SVK+IRN++TG
Sbjct: 103916 LEPYMDENFISRAFATMGELVLSVKIIRNRLTGYV*SLFVFYHIPNFGVHLHTLFSLSRI 104095

Query: 46 PAGYCFVEFADEASAERAMHKLNGKPIPGANPP 78
 PAGYCFVEFAD A+AE+ +HK+NGKP+PGA P
Sbjct: 104096 PAGYCFVEFADLATAEKCLHKINGKPLPGATPV 104194

The portion YV*SLFVFYHIPNFGVHLHTLFSLSRI is the translation of an intron. It has no
correspondence in the query, and it also contains a stop codon (it is normal as introns
have no coding constraint). The remove_internal_introns method detects these cases by
searching the sequence in the target for stretches of at least 18 bp (6 amino acids) not
aligned to the query, and removes them from the prediction.
The second improvement is performed by function clean_inframe_stop_codons. This is
applied to predictions by all programs, and comes from the observation that often these
programs include stop codons that should be avoided. This would cause these predictions
to be mislabelled as pseudogenes. This method is simple in principle: it checks for the
presence of stop codons close to exon boundaries (default maximum: 10 codons). If it
Þnds any, it removes the stop codons and also the portion which links it to the closest exon
boundary.
The third improvement is exclude_large_introns. This is particularly useful on exonerate
predictions, which sometimes possess extremely large introns, due only to spurious
similarity with far away regions, and to the presence of decent splice sites just by random.
This function detects each such large intron (default >= 140000 nt), and removes all exons
(typically just one) at one side of that intron, the side with the smallest coding sequence.
While all described methods are applied before prediction choice, the fourth and Þfth
improvements are performed after Þltering, and only on predictions passing the Þlter.
The functions complete_at_Þve_prime and complete_at_three_prime are attempts to
complete the coding sequence predictions looking for an upstream ATG and a downstream
stop codons. LetÕs see the corresponding lines in the selenoproÞles.conÞg Þle (expanded
for readability):

22

ACTION.post_filtering._improve4=
 \\ if x.filtered=='kept':
 \\ x.complete_at_three_prime(max_extension=10, max_query_unaligned=30)

ACTION.post_filtering._improve5=
 \\ if x.filtered=='kept':
 \\ x.complete_at_five_prime(max_extension=15, max_query_unaligned=30, full=False)

The completion at 5Õ is performed only if a ATG is found before a stop codon, and if at
most 15 codons would be added. Also, two other conditions must be met: no non-standard
characters must be Þnd in the 5Õ extension, and the proÞle query of this prediction must
have an unaligned portion at N-terminal not bigger than 30 amino acids. This is to avoid
completing partial hits, whose upstream ATG are not likely to be the real starts, as other
large portion of coding sequence are expected upstream.
Also, normally the function stops when the Þrst methionine is found upstream -- if the Þrst
codon is already a AUG, no extension is performed. When full=True is provided, it
attempts instead to extend to the furthest possible methionine, when coupled with high
values of max_extension.
The completion at the 3Õ is performed only if the proÞle query has an unaligned portion at
C-terminal not bigger than 30 amino acids, if the extension is at most 10 codons, and if no
strange characters are found in the candidate extension.
The behavior of these functions can be easily altered by the user with the main
conÞguration Þle. When searching bacteria in particular, one may want to increment the
extension parameters, as the absence of introns makes extensions more reliable.
SelenoproÞles can be customized to perform additional improvements. The user has to
write a function accepting a p2ghit as input, and modify the main conÞguration Þle to run
the function at the right step, using actions.

Prediction program choice

After the genewise step, three predictions are available for every candidate: one by blast,
one by exonerate, and one by genewise. The predictions are analyzed and only one is
taken to represent this candidate gene to the Þltering phase, and possibly to output. The
function choose_prediction is used to decide among any number of candidates. This same
function is used during all steps in which genes are merged to remove redundancy, to
decide which one to keep. The following conditions are checked in order: if at any point
only one of the predictions shows to be better than all others for a criteria, the function
stops and that prediction is returned.
The Þrst condition checked is the presence of frameshifts. If a prediction possesses
frameshifts while another doesnÕt, the latter is taken4.
Then, if the predictions come from a selenoprotein family, the number of aligned Sec
positions is considered: if one possess more than the others, it is chosen.
The number of in-frame stop codons (others than SecTGAs) is then checked: if one
possess less than the others (for example one has none, while the others have), it is
chosen.
After, the length of the predicted coding sequence is determinant: the prediction featuring
the longest sequence is chosen.

23

4 Nonetheless, blast predictions are automatically discarded if any other prediction contains frameshifts. This
is necessary because blast does not predict frameshifts. Thus, when a real pseudogene with frameshifts is
analyzed, the prediction choice routine would inevitably goes to the blast prediction since the others have
frameshifts and blast does not.

If at this point the choice has not been made yet, the prediction whose program has
highest priority is chosen, given these priorities in descending order: genewise, exonerate,
blast.
Option -no_blast forces SelenoproÞles to choose the exonerate or genewise prediction.
This is useful only if an accurate splice sites prediction is important for you. It comes at the
cost that, when only the blast prediction is available (for example because exonerate
produced an empty output, and genewise an invalid alignment), the candidate is always
discarded.

Labeling

After a single prediction per candidate is chosen, this is analyzed and labelled.
For standard families, there are only two possible labels: homologue (a regular prediction)
and pseudo (with any in-frame stop codon or frameshift). It is possible for the user to
deÞne its own labeling procedure: this is shortly described in the option -add chapter.
For selenoprotein families, labeling is used to characterize the amino acid aligned to the
Sec position. Generally thereÕs a single Sec in selenoproteins. If thereÕs more than one,
the label assigned by selenoproÞles depends on the most-left aligned Sec position. The
possible labels are selenocysteine, cysteine or any other amino acid (only rarely found at
these positions though). If the prediction does not span any Sec position, it is labelled as
unaligned. If it contains frameshifts or in-frame stop codons (apart from Sec-TGA), then it
is labeled as pseudo. An additional label, uga_containing, is assigned to those predictions
whose only pseudogene feature is one or more in frame UGAs (of course not aligned to
Sec positions). This label is useful because very rarely the scoring schemes used for
selenoprotein families allow the alignment over a non-Sec UGA, and we donÕt want to Þlter
those out as if it were pseudos. Also, the label may be useful to discover new Sec
positions in known selenoprotein families.

Final Þltering

After labeling, predictions are evaluated through the Þnal Þlter before output. This Þlter,
exactly as the blast Þlter, can be speciÞc for each family and be written using the methods
provided in selenoproÞles classes. The Þlter outcome is summed up in a Þltering label,
hereafter called ÒÞltering stateÓ (or just state) to differentiate it from the label assigned in
the previous step. The Þnal Þlter actually consists of two separate Þlters, called
p2g_Þltering and p2g_reÞltering in the conÞguration Þles. A prediction excluded by the Þrst
one will be assigned a state of Þltered. A prediction excluded by the second one will be
assigned a state of reÞltered.
Just before the predictions enter the Þnal Þlter, there is an additional redundancy check:
the predictions overlapping each other are compared and only the best one is kept.
Predictions discarded this way are assigned a state of redundant.
Those predictions which passed all the redundancy check and the two steps of the Þnal
Þlter without being discarded are assigned a state of kept and represent the normal output
of selenoproÞles.
Nonetheless, the user may decide to output the predictions with a different state, using the
-state option, optionally with multiple arguments, comma separated with no space within. If
for example you want to output all Þltered and reÞltered predicted, add to your command
line:

 -state filtered,refiltered

The -state option can accept the following arguments: kept, Þltered, reÞltered, redundant or
overlapping (see below). There is a way to have even more control on what prediction are

24

output: the -output_Þlter option. This accepts a procedure with the same syntax of Þlters
and actions, which is evaluated for every prediction: those for which this evaluates to True
will be output. If for example you want to output only predictions on the positive strand, you
can use:

 -output_filter Òx.strand==Õ+ÕÓ

To do this, you need to know a bit about the classes used in selenoproÞles, described in
the advanced usage section. After Þltering, results are stored in the sqlite database, ready
for the output phase.

Removing inter-family redundancy

SelenoproÞles scans for multiple proÞles in a single run. The output is produced only when
all families have been searched. This is because results from different proÞles may
overlap, especially when some of them share a certain degree of sequence similarity. So
after all results are stored in the database, this is parsed and every prediction is compared
with all others on the same chromosome (or contig). When two such predictions overlap,
the function choose_among_overlapping_p2gs_interfamily is used to decide which one to
keep. The other is assigned a state of overlapping. These predictions will not be output by
default. Note that this operation is performed directly on the database: the intermediate
text Þles written in the Þltering phase will display the state previously assigned.
Another important note: the inter-family redundancy check is performed every time an
output phase is run, and depends on the results present in the database at that moment.
For this reason, searching several proÞles in distinct selenoproÞles runs will lead to more
(or the same number of) output Þles than searching all of them in a single run. The results
database at the end will be identical, but as when every proÞle reached its output phase,
the predictions of all other proÞles were not available, the inter-family redundancy cannot
be checked properly.
If you searched different proÞles on separates runs, the best thing to do is just delete all
output Þles and rerun selenoproÞles with all these proÞles using -D ßag to re-run database
storage. No heavy computation will be repeated, and only the output Þles for the non-
overlapping predictions will be produced.

Running selenoproÞles in parallel

SelenoproÞles can be easily parallelized to be run on a large number of targets. Since the
computation is independent for each target, such selenoproÞles jobs (optionally scanning
for multiple proÞles) can be freely split and submitted to different nodes of a computer
cluster. But selenoproÞles allows also to split the computation on a single target, which is
necessary if you are using it to completely annotate a genome with a comprehensive
collection of protein proÞles. In this case, the potential overlap of results by different
proÞles is a hurdle to parallelization. Thus, the strategy is not to proceed to output until
results from all proÞles are available. This can be accomplished by option -stop. With this
option, the program will stop after having Þltered and stored the results in the sqlite
database. So, you can parallelize the search for each proÞle, using -stop in each such
command line. Following the Þrst example shown in this manual:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p family1 -stop
Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p family2 -stop
Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p family3 -stop
Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p family4 -stop
...
Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p familyN -stop

25

Each of the commands above can be sent to a different node in a computer cluster. When
all of them are Þnished, you can then run:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p fam_all -merge

Assuming that the keyword fam_all is deÞned in the main conÞguration Þle as the list of all
proÞles, this will make selenoproÞles load all results previously computed from the
database, remove inter-family overlaps, and proceed to output for all proÞles.
This strategy works only if all selenoproÞles instances in the parallelized phase work until
completion. If for any reason any job crashes, this may leave the sqlite database in a state
that compromises the other jobs as well. If you experience database errors, you may need
to cleanse the results.sqlite Þle using script selenoproÞles_database.py, and rerun. In the
worst case, you can delete the sqlite Þle. As all intermediates Þles by slave programs are
kept (unless you activated option -clean), the great majority of computation is never
repeated anyway.
Option -no_db provides a more robust alternative to -stop. When -no_db is active, the
sqlite database is not used at all by selenoproÞles, and execution is stopped after the Þnal
Þltering step. Therefore, you can parallelize the jobs as before:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p family1 -no_db
Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p family2 -no_db
...
Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p familyN -no_db

and Þnally compute overlaps and output with this:

Selenoprofiles results_folder -t /db/genome.fasta -s "Macaca_mulatta" -p fam_all -merge

In this case, the computational time required for the last run is signiÞcantly increased,
since all intermediate Þles need to be parsed again, and all actions have to be rerun to
populate the database. Normally though, this is acceptable time-wise.

26

Advanced usage

SelenoproÞles was designed to be as customizable as possible. It offers to the user the
possibility of writing python code which will be integrated and run. The code can be
provided mainly through the conÞguration Þle of each proÞle, and through the main
selenoproÞles conÞguration Þle. Additionally, custom modules can be loaded using option
-add, as we will see later.
In the simplest use of custom code, the user can set proÞle speciÞc procedures, exploiting
the built-in methods for Þltering:

fam1.fa.config
blast_filtering = x.evalue < 1e-15
p2g_filtering = x.awsi_filter (awsi=0.3)
p2g_refiltering = x.coverage() > 0.5

With more experience, it is possible to add custom information to output, or even annotate
motifs or secondary structures in the predictions:

selenoprofiles config
(...)
ACTION.pre_output.see_cys= write(x.output_id()+ " Cys:" +(join([str(i) for i, aa in
enumerate(x.protein()) if aa== "C"] or "None"), 1)

output
fam1,1.homologue Cys:14,17,64,189,192
fam1,5.homologue Cys:18,21,194,197
fam1,11.pseudo Cys:60,63
fam1,19.pseudo Cys:None

The p2ghit class

To learn how to use custom code, you need to be familiar with some variables and classes
in selenoproÞles, as these are the objects that your code will be manipulating. To do this,
you should have already some experience with python code and classes. The p2ghit class
is the key of user customization. It represents a prediction of selenoproÞles, coming from
any source among blast, exonerate or genewise. It contains the alignment of a query
against a target, and the genomic coordinates of such alignments. LetÕs see its mostly
used attributes and methods (for a full list, read script selenoproÞles.py at class p2ghit):

27

p2ghit class

Attribute or method Description

id The numeric id of the prediction (string). It is unique for that family and target

chromosome The Þrst word of the fasta header of the chromosome or scaffold where this prediction resides

strand The strand of the prediction (+ or -)

label The label assigned to this prediction in the labeling phase

Þltered The Þltered state assigned by the Þltering phase (kept, filtered , refiltered, redundant).

After inter-family overlaps are computed, the state overlapping is also possible

output_id() The prediction name displayed in output (proÞle name.index id.label). Example: SelK.1.pseudo

prediction_program() The program that generated this prediction (blast, exonerate or genewise)

query_full_name() The full name of the query, as it appears in the proÞle alignment

coverage() A ßoat value, indicating how much proÞle is spanned by the prediction (max is 1.0)

protein() Protein sequence, with * for stop codons, U for Sec

cds() Nucleotide coding sequence, as ATGC characters

positions_summary() A string with the positions of all exons. Examples:

24-40,70-100 (+ strand) 400-450,340-354 (- strand)

exons A list (array) containing the exons. Each exon is a list of 2 elements (integers), the position of

start and the position of end of the coding sequence, both 1-based and included. Each

prediction has at least one exon.

header() A string used as default fasta header. Contains lots of non-sequence information. Example:

SBP2.1.homologue chromosome:scaffold1 strand:+ positions:869-881,1163-1417

species:Polysphondylium_pallidum_PN500 target:genomes/P.pallidum/genome.fa

prediction_program:exonerate

dna() Full nucleotide gene sequence, including introns and frameshifts if present.

splice_site_sequences() A list of 4 letter strings, with the Þrst two and last two nucleotides of each intron in the

prediction.

subsequence(self, start, length) Generic function to return any nucleotide subsequence of a prediction, using lazy computing. It

can be used with negative start or large length to get the sequence around the genomic

interval. Normally the indexes are relative to the predicted coding sequence, but you can use

include_introns=True to count any nucleotide in the gene prediction.

alignment Pairwise protein alignment between a proÞle query and the target, as an instance of the

alignment class in MMlib (if interested, check its code in the installation directory).

There are plenty more of methods. Many are actually inherited from the p2ghit parent
class, called gene, deÞned in the library MMlib.py.

28

Custom output: option -fasta_add

The -fasta_add option represents an elegant and fast way to add information to output. A
python written procedure with the same style of actions and Þlters must be provided as
argument. The procedure is evaluated to a string which is inserted in the fasta headers of
the Þles in output. All the fasta Þles in output will contain the add-on, as they all call the
same function to determine the fasta header. Files with extension fasta, cds, dna,
three_prime, Þve_prime and also ali will have it. LetÕs see an example. Normally the fasta
headers contain the following information:

>GPx.6.selenocysteine chromosome:chr3 strand:- positions:
49395460-49395711,49394824-49395180 species:"Homo sapiens" target:/Genomes/
Homo_sapiens/genome.fa prediction_program:genewise

LetÕs say that you want to add the length of the protein to the header. You could add this to
your command line:

-fasta_add ' " seq_length: " +str(len(x.protein()))'

Now if you run selenoproÞles with this (forcing the replacement of the old output with -O or
specifying another output folder), you will have:

>GPx.6.selenocysteine chromosome:chr3 strand:- positions:
49395460-49395711,49394824-49395180 species:"Homo sapiens" target:/Genomes/
Homo_sapiens/genome.fa prediction_program:genewise seq_length:203

Actions

The actions are performed during the workßow on each prediction coming from the
prediction choice/labelling step. The action is provided as python code that is directly
executed in the selenoproÞles environment. In a classical for loop, the variable x in the
code is replaced by each p2ghit instance and executed. The keyword ACTION in the main
conÞguration Þle denotes the active actions. Actions can be speciÞed also in the command
line. From now on, we will display the examples with the conÞguration Þle syntax:

ACTION.pre_filtering.echo = print ' hello world ' , x.id, x.label

Separating the left side with dots, the Þrst Þeld is the keyword ACTION, the second Þeld is
the category of the action and the third is the name of the action. The category determines
the time point of the actions, while the name is used only to order the actions in the same
category. In this example, the user will just see something like this appearing in the output
of selenoproÞles:
...
CHOOSE: choosing among available predictions, assigning label --> selenoprofiles_results/
Polysphondylium_pallidum_PN500.genome/prediction_choice/SelI.tab (just loading file)
SelI.1 : exonerate longest CDS predicted unaligned
SelI.3 : blast longest CDS predicted unaligned
SelI.4 : exonerate longest CDS predicted unaligned
SelI.7 : blast SecTGA aligned pseudo
hello world 1 unaligned
hello world 3 unaligned
hello world 4 unaligned
hello world 7 pseudo
...

Each action is performed on all available prediction at a certain step of the pipeline,
determined by his category. There are many possible categories of actions:

29

post_blast_Þlter, post_blast, post_blast_merge, pre_choose, pre_Þltering, post_Þltering,
pre_output.

The categories names are pretty self-explanatory, but see Appendix 2 for their precise
temporal mapping. The actions post_blast and post_blast_merge are performed on blast
hits, while the others are performed on blast hits or exonerate/genewise predictions.
You will have to choose the category of your actions depending on what operation you
want to perform. Actions executed during pre_Þltering can be used to improve the
predictions, but remember that their attribute .Þltered is not set yet. post_Þltering actions
can access the .Þltered attribute and are performed before storing results on the database.
pre_output actions can add useful information to the log output.
LetÕs see an example which uses an if statement to execute operations only on a certain
subset of the available predictions. Typically, the attributes that you want to check are
the .label and the .Þltered attributes. LetÕs say for example that we want to check the
chromosomes and strands where the prediction with label ÒunalignedÓ rely:

ACTION.post_filtering.test = "if x.label=='unaligned': print x.output_id(), ' CHROMOSOME
', x.chromosome, x.strand "

This adds something like this in the standard output of selenoproÞles:

...
SelI.1.unaligned CHROMOSOME gi|284795330|gb|GL290990.1| +
SelI.3.unaligned CHROMOSOME gi|284795323|gb|GL290997.1| +
SelI.4.unaligned CHROMOSOME gi|284795338|gb|GL290984.1| -
...

The next action is for giving a quick look to the protein sequence of all discarded
predictions. Below is the output added.

ACTION.post_filtering.check_ali = "if x.filtered != 'kept': print x.output_id(),
x.protein()"

...
SelI.4.unaligned ITLVGLFCNIAMYLIVYFQCPGLTEPAPRWCYFLIAFLIFAYQTLDNLDGKQARRTKSSSPLGELFDHCCDA
SelI.7.pseudo VTATGFVCNFIALFLMSSYMRPVNDGQEPV
...

After the post_Þltering actions are performed, the results are stored in the selenoproÞles
database. Remember that if selenoproÞles Þnds the results in the database, it does not
perform the steps up to Þltering. Therefore beware that if you specify actions of category
pre or post Þltering (or any of the categories before them) on a second run of
selenoproÞles, it wonÕt perform them unless you force the proper routine, for example with
option -F to force the Þltering routine. pre_output actions, on the contrary, are performed
both if in the current run results are produced or loaded from the database, but only on the
results which are output (determined by the -state option).
Later, we will see how actions can be used to correct gene structures, or to add custom
genomic features to the predictions.

Blast Þltering

There are 3 layers of Þltering in selenoproÞles, all regulated by procedures deÞned in the
proÞle. We have already seen them: blast Þltering, p2g Þltering and reÞltering. The same
grammar applies to all of them. For blast Þltering, the most common attribute checked is
the evalue, an attribute speciÞc of blast hits. The blast hit is a subclass of p2ghit and has

30

the same methods. LetÕs see a simple blast Þltering procedure as written in a proÞle
conÞguration Þle; this accepts only the blast hits with evalue minor (better) than 1e-5:

blast_filtering = x.evalue < 1e-5

SelenoproÞles offers also more sophisticated tools, which map the prediction back to
proÞle alignment to use what we know from the proÞle alignment. For example many
families possess N-terminal regions of disordered or repetitive sequence, which hits
spuriously many regions in the genome. The resulting blast hits span only the initial portion
of the proÞle.
You may want to exclude those, using function is_contained_in_proÞle_range:

blast_filtering = x.evalue < 1e-5 and not x.is_contained_in_profile_range(1, 35)

The similar function spans_proÞle_range asks whether the predictions spans certain
columns of the alignment, useful when you want only proteins with a certain conserved
domain.

blast_filtering = x.evalue < 1e-5 and x.spans_profile_range(50, 60)

The function show_conservation_in_proÞle_range is useful when dealing with blast
Þltering of proÞles with regions of low information. It checks the number of pairwise
similarities (deÞned as positive scores in the BLOSUM62 matrix) between the amino acids
in the query and in the target in the prediction along a certain proÞle range. In the example
below, predictions are required to have 3 conserved amino acids in the region from
positions 1 to 50.

blast_filtering = x.show_conservation_in_profile_range(1, 50, 3)

AWSI Z-score based Þltering

We developed various method to score how much a sequence ÒÞtsÓ in a protein proÞle. We
called the best performing one Average Weighted Sequence Identity (AWSI).
It is based on the Weighted Sequence Identity (WSI), a scoring method for comparison of
two sequences, with one of the two belonging to a proÞle alignment.
The WSI score is computed as an average of sequence identities with different weights on
the different columns of the proÞles. In the pairwise comparison between the proÞle
sequence and the candidate sequence, the weight is given by the representation of the
amino acid in this proÞle sequence and column across all the proÞle. More conserved
columns are given more weight thus more importance. This weight is also multiplied by the
column coverage, that is to say, the total number of characters which are not gaps divided
by the total number of proÞle sequences. In this way, the alignment regions present only in
a small subset of sequences have less importance.
When the term AWSI is used in this manual, we refer to the variant AWSIc, computed as
just explained. There is another variant (AWSIw), which is computed in the same way, but
the weight is not multiplied by the column coverage.
When comparing a candidate sequence against a proÞle, a WSI for each proÞle sequence
is calculated. Each one ranges from 0 to 1, as it is normalized to the sum of weights in that
WSI. Now the AWSI of the candidate sequence is just the average of all computed WSI.
Although the range of AWSI is also between 0 and 1, the maximum value it can assume is
constrained by the proÞle characteristics. In a proÞle with very dissimilar sequences, no
candidate sequence can reach high scores (as if it matches a sequence of the proÞle, it
cannot match the different ones at the same time). Thus, it is useful to adjust the AWSI
threshold for each proÞle.

31

For this purpose, proÞle alignments are analyzed when used for the Þrst time, and AWSI
values for all sequences are computed. For each proÞle sequence, we compute its AWSI
as explained above, considering this sequence as a candidate, and the rest of sequences
as the proÞle to compare against.
The distribution of these AWSI scores is used to decide the similarity threshold when Þtting
a sequence into this particular proÞle. The AWSI score of the target sequence is Þt in a
Gaussian distribution with the proÞle average and standard deviation, and a Z-score is
computed. In the default p2g reÞltering procedure (awsi_Þlter), the Z-score must be greater
than -3.
The script selenoproÞles_build_proÞle.py can be used to display the distribution of the
AWSI scores with option -d, as shown here above (pylab must be installed). The
frequencies of the computed AWSI values are shown as green columns, while colored
dots are used to display the approximated gaussian distribution: the red dot is the
average, while the purple, blue and cyan dots correspond to the average minus 1, 2, 3
standard deviation respectively. The default cut-off point is thus indicated by the leftmost
cyan dot.

The methods of the p2ghit class relevant to AWSI scores are:

¥ awsi() with no arguments, it returns the AWSIc value for this candidate. Used as
awsi(with_coverage=True), returns AWSIw instead

¥ awsi_z_score() returns the z-score compute comparing the AWSI of this candidate with
the proÞle distribution. This function also accepts the with_coverage=True switch to
return AWSIw instead.

¥ awsi_Þlter() returns True if the prediction would pass the default AWSI-based Þltering,
False otherwise. This function also accepts the with_coverage=True switch to return
AWSIw instead. This is normally computed just as awsi_z_score()>-3, with two possible
exceptions. For extremely conserved proÞles, the cut-off threshold would be generally
too strict. Thus, if the candidate has an extremely high AWSI (>0.9), it is accepted

32

regardless of the proÞle characteristics. The second exception is for proÞles with few
sequences (<3). In these case, the computed AWSI standard deviation is always zero or
extremely close to it, and this would also result in Þltering too strict. Thus, for these
proÞles the Þlter just checks that awsi()>=0.3

One can easily alter the Þlter behavior using any of these arguments to the awsi_Þlter
function: z_score, awsi, few_sequences_awsi. For example awsi_Þlter(awsi=0.5) accepts
any candidate scoring a AWSI with the proÞle of 0.5 or greater (or a z_score >-3).

Other Þltering functions

HereÕs some other methods useful for blast or p2g Þltering of speciÞc families.
The function seq_in_proÞle_pos provides the amino acid predicted in the target at a
certain position of the proÞle alignment (may be - for unaligned). It can be used to check
that certain domains are complete (e.g. redox boxes CXXC).

p2g_refiltering = x.seq_in_profile_pos(31)== 'C' and x.seq_in_profile_pos(34)== 'C'

The function sequence_identity_with_proÞle computes a quantitative measure of how
much the prediction Þts in the proÞle: it computes the sequence identity of the prediction
with every proÞle sequence, and average them. It is a simpliÞcation of the AWSI score.
With no arguments, internal (but not terminal) gaps are counted as mismatches. The
choice of the threshold in this case depends largely on the proÞle.

p2g_refiltering = x.label!='pseudo' and x.sequence_identity_with_profile()>=0.25

The more useful function sequence_identity_in_range is analogous the previous one, but
computes the average sequence identity only on a certain range of the proÞle. Predictions
not spanning this region are given 0.

p2g_refiltering = x.label!='pseudo' and x.sequence_identity_in_range(40, 80)>=0.35

For a full list of the methods of the p2ghit class, run selenoproÞles_3.py with -help full or
inspect the script inside your installation directory.

Tag blast Þltering

Tag blast is an implemented form of Þltering. This consists in searching the protein
sequence predicted in the target against a comprehensive protein database (typically nr -
non redundant proteins at ncbi). The output generally provides a good annotation of the
protein in question. Note that your proÞle may match sequences in the genome that are
real genes, but do not belong to your family and are hit because of their sequence
similarity. These predictions usually have blast hits against proteins in nr which are not in
your protein family. Tag blast utilizes a set of proÞle-deÞned tags to scan the titles in the
blast output and assign a score to the prediction. A predicted sequence that resembles
proteins not belonging to the family are likely to be spurious, and will be assigned a
negative tag score. To use tag blast, you must Þrst set the list of tags for your proÞle in its
conÞguration Þle. Tags are strings which are interpreted as perl regular expressions. In the
conÞguration Þle of the proÞle, the tags are written as a python list of strings:

tags = ['SecS ', '(Sec|selenocysteine|tRNA).* selenium transferase']

Tags should be carefully designed in order to recognize all sequences of the proÞle and
those with similar names. For each blast hit appearing in the blast Þle, the tags are tested
and a score is assigned to the title. Its absolute value is the negative logarithm of the

33

evalue: a blast hit with evalue 1e-5 gets 5 points. The Þnal tag score assigned to prediction
is the sum of all the titles. If the title matches any proÞle tag, its score will be positive. If it
matches any neutral tag, its score will be zero. If a title does not match any proÞle or
neutral tag, its score will be negative. The neutral tags are used to skip all the blast hits
with uninformative titles and those based only on computational prediction. The neutral
tags are deÞned in your main conÞguration Þle, with a decent default value. For Þltering,
we check whether the Þnal tag score assigned to predictions is positive:

p2g_refiltering = x.label!='pseudo' and x.tag_score() > 0

If you want to use the tag score in a Þlter, we suggest you to inspect manually the results
and check their tag score Þrst. For example with this action (paste it in the main
conÞguration Þle):

ACTION.post_filtering.check_score = print ÒTag score ofÓ, x.output_id()+Ó filtered:
Ò+x.filtered+Ó\nÓ+str(x.tag_score(verbose=1)) 5

The verbose mode will allow you to check the titles of all proteins present in the blast
output and the score assigned to them. This will allow you to build and improve useful tags
for your family.
When the method tag_score is run for the Þrst time on a p2ghit, blastp is run against the
database deÞned in the proÞle or in the main conÞguration Þle (under the keyword tag_db).
The output Þle is kept in the tag_blast subfolder inside the folder dedicated to this target. A
tag blast run takes a few minutes, so take care of avoid doing it on a lot of hits. If you put
the tag_score evaluation on the right side of an and construct, the tag blast will not be
performed unless all conditions to his left are true:

p2g_refiltering = x.coverage()>0.4 and x.label!=ÔpseudoÕ and x.tag_score()>0

GO score Þltering

Similarly to the tag score, the GO score utilizes the same blast search against nr, but in
this case it is the GO terms associated to the proteins found which are evaluated. A list of
the positive GO terms is to be provided in the proÞle conÞguration Þle:

go_terms = ["GO:08028", "GO:08030"]

A score is assigned to each blast hit depending on the evalue, as in the tag score. The GO
terms are searched considering their hierarchy: if for a certain title in the blast output, a
GO term is found which is a child of a GO term deÞned in the proÞle conÞguration, this will
count as positive. Blast hit with no annotated GO are scored neutral. Only molecular
functions GO terms are checked.

p2g_refiltering = x.label!='pseudo' and x.go_score()>0

Integrate your own code: option -add

With the -add option, you can provide a python add-on Þle that will be loaded in
selenoproÞles. This will allow you to deÞne functions can then be used in any procedure,
for example for Þltering or output. The code inside the Þle provided is read line by line and
executed in selenoproÞles when all variables are already loaded and everything is ready to
run.

34

5 the str() function is necessary to convert the integer returned by tag_score into a string that can be
concatenated and printed

User deÞned functions are useful for Þltering, labeling or outputing. LetÕs see how to create
a simple output function. Create a Þle called extension.py where you deÞne function which
accept a p2ghit:

def my_name_is(z):
 """This functions accepts a p2ghit and returns its output id """
 return z.output_id()

If you now you provide this Þle with the option -add, the function my_name_is will be
available in selenoproÞles. Running selenoproÞles with:

-add extension.py -ACTION.pre_output.test "print my_name_is(x)"

you will have something like this in the output:

...
SelI.1.unaligned
SelI.3.unaligned
SelI.4.unaligned
...

LetÕs see a more relevant example. Assume that for some reason you are interested only
in the non-pseudo, single-exon predictions. You could then write this function in your
extension.py:

def has_no_introns(z):
 ÒÓÓ This functions accepts a p2ghit and returns True if it has no introns ÒÓÓ
 return len(z.exons)==1

You may then use this function for Þltering, adding something like this in your proÞle .conÞg
Þle:

p2g_refiltering = x.label!= "pseudo" and has_no_introns(x)

Adding functions may be useful for several purposes. It is possible to write procedures to
improve the predictions, as those previously presented, or for Þltering, as shown above. It
can also be used to perform one-time operations (for example to load custom data), or
override some functions or attributes used in selenoproÞles. For example, the user may
want to customize the labeling procedure used in selenoproÞles. The easiest way to do
this is writing a new labeling procedure in the extension.py Þle, which redeÞnes the .label
attribute of the input p2ghit, and use it in a pre_Þltering action. In this example, we deÞne a
procedure to label the predictions as short or long, checking their predicted protein length:

def custom_labelling(z):
 if len(z.protein()) >= 50: z.label=ÔlongÕ
 else: z.label=ÔshortÕ

We activate this by adding this action in the main conÞguration Þle:

ACTION.pre_filtering.labelling = custom_labelling(x)

Note that when the new function is called, the standard labeling procedure has been
already called, so a .label attribute is available, and you can check it (or use it) to deÞne
the new label. Example:

def custom_labelling(z):
 original_label=z.label
 if len(z.protein()) >= 50: z.label=Ôlong_Õ+original_label
 else: z.label=Ôshort_Õ+original_label

35

The label is then typically used for Þltering:

p2g_refiltering = x.label.startswith("long")

There are a few global functions in selenoproÞles that user may be interested in altering. In
various steps of the workßow, the program must decide which gene structure prediction is
best among 2 or more candidates. The Þrst such function is named choose_prediction.
This is used in the prediction choice step, when a single prediction among blast, exonerate
and genewise is chosen. It accepts a list of p2ghit, with variable length (1-3). It returns a
tuple like (p, s) where p is the chosen p2ghit and s is a string with a reason why (it will be
printed and stored in a Þle). The native function is the quite complex, and takes into
account the presence of frameshifts, presence of stop codons, aligned Sec position (for
selenoprotein families), length of coding sequence (you can inspect the code at def
choose_prediction in selenoproÞles.py). LetÕs see an example in which this function is
replaced by a simple hierarchal function, choosing predictions by genewise over those by
exonerate, over those by blast (note that it is still possible that even blast is chosen in this
way, if for a given hit the exonerate and genewise predictions are empty or non-valid). Put
this into your extension.py Þle provided to option -add:

global choose_prediction
def choose_prediction(candidates):
 for c in candidates:
 if c.prediction_program()==ÔgenewiseÕ: return (c, Ôgenewise is availableÕ)
 for c in candidates:
 if c.prediction_program()==ÔexonerateÕ: return (c, Ôexonerate is 2nd bestÕ)
 return (candidates[0], Ôonly blast availableÕ)

When writing a new choose_prediction function, you may still want to call internally the old
function, which you can refer to as choose_prediction_selenoproÞles. In this example, the
new function keeps the behavior of the old one, except for blast predictions which are
forced to be never chosen. This is accomplished by returning an empty_p2g() object when
only blast is available.

global choose_prediction
def choose_prediction(candidates):
 if all([c.prediction_program()==ÔblastÔ for c in candidates]):
 return empty_p2g(), Ôexcluding blastÕ
 else:
 return choose_prediction_selenoprofiles(candidates)

The second such function is named choose_among_overlapping_p2gs_intrafamily and is
used when removing intrafamily redundancy. This accepts two p2ghit that were found
overlapping and returns the best one, which is kept. The default function calls internally
choose_prediction. In its code, this is named choose_prediction_selenoproÞles, so if you
override the choose_prediction, the choose_among_overlapping_p2gs_intrafamily function
will still run the original, built-in procedure.
If you want to remove intrafamily redundancy using an overridden choose_prediction
function, it is necessary to override choose_among_overlapping_p2gs_intrafamily too. You
can search its code in selenoproÞles_3.py as a template.
The third and last function is named choose_among_overlapping_p2gs_interfamily and is
used when removing redundancy between gene predictions by various proÞles. This also
accepts two p2ghit and returns one. The default function considers the AWSI score of the
candidate with the 2 proÞles, and their Þltered attribute (a prediction kept by a proÞle is
never masked by an overlapping prediction Þltered by another proÞle). LetÕs see how to

36

replace it with a function which always keeps the prediction with longer protein sequence.
Create an extension.py Þle like this:

global choose_among_overlapping_p2gs_rem_red
def choose_among_overlapping_p2gs_rem_red(p2g_hit_A, p2g_hit_B):
 if len(p2g_hit_A.protein()) > len(p2g_hit_B.protein()): return p2g_hit_A
 elif len(p2g_hit_A.protein()) < len(p2g_hit_B.protein()): return p2g_hit_B
 else: return p2g_hit_A

If you believe that your own function may be useful to other users, or if you need help
building your own function, feel free to contact me (see email on the cover page).

Custom prediction features

SelenoproÞles offers the possibility to annotate and manipulate custom features linked to
gene predictions. Such annotations (p2g_features) can be used for example for protein
motifs or domains, or signal sequences, or secondary structures, present in all or some
gene predictions. Within selenoproÞles, SECIS elements are implemented as
p2g_features. Technically, p2g_feature is a python class, thought to be generic so the user
can created a child-class (subclass) to adapt it to his speciÞc purpose.
SelenoproÞles includes a built-in example to show the capabilities of p2g_features: the
class protein_motif. This is thought to annotate a short motif within the protein sequence,
the redox box, expressed as the perl-like regular expression C..C (C stands for cysteine,
and . means any character). The class protein_motif allows to detect these motifs and
easily integrate them in the p2g or gff output.
For any custom p2g_feature, the user has to deÞne at least the following procedures: how
to search and assign these features, how to dump them in the sqlite database, how to load
them back. Then, optionally one can deÞne how to output them to the gff and/or p2g Þle,
and also how to reload the features if gene structure predictions are modiÞed. The
protein_motif includes examples of all these procedures.

37

All the code relevant to the protein_motif is here below, copied from selenoproÞles_3.py.

def annotate_protein_motif(p, silent=False):
 """p is a p2ghit. This is an example of method to annotate the p2g_feature protein_motif. To use,
add this to the main configuration file:
 ACTION.post_filtering.annotate_motif = "if x.filtered == 'kept': annotate_protein_motif(x)"
 """
 s= protein_motif.motif.search(p.protein()) ##using search method of re.RegexObject --
protein_motif.motif is such an object
 while s:
 protein_motif_instance= protein_motif()
 protein_motif_instance.start= s.start()+ 1 #making 1 based
 protein_motif_instance.end= s.end() #making 1 based and included, so it'd be +1-1
 protein_motif_instance.sequence= \\
 p.protein() [protein_motif_instance.start-1 : protein_motif_instance.end]
 p.features.append(protein_motif_instance) ## adding feature to p2g object
 if not silent: printerr('annotate_protein_motif found a motif: Ô \\
 +protein_motif_instance.output()+ ' in prediction: ' +p.output_id(), 1)
 s=protein_motif.motif.search(p.protein(), pos= s.start()+ 1) ## searching again, starting from
just right of the previously found position

class protein_motif(p2g_feature):
 """ protein motif is an example of a p2g_feature, to annotate the positions of a certain motif
defined as a perl-style regexp. The motif is defined in the line following this, as a class
attribute. In the example, the redox box (CXXC) is the motif.
 Attributes:
 - start start of the protein motif in the protein sequence (1-based, included)
 - end end of protein motif in the protein sequence (1-based, included)
 - sequence motif sequence
 """
 motif=re.compile('C..C')
 included_in_output=True
 included_in_gff= True

 def dump_text(self):
 """ Returns a string with all the information for this feature. This string is stored in the
sqlite database. """
 return str(self.start)+ ':' +str(self.end)+ ':' +self.sequence

 def load_dumped_text(self, txt):
 """ Reverse the dump_text method: gets a string as input, and loads the self object with the
information found in that string. """
 start, end, sequence= txt.split(':')
 self.start= int(start); self.end=int(end); self.sequence=sequence

 def output(self):
 """ Returns a string. This will be added to the p2g output of the prediction to which this
feature is linked -- if class attribute included_in_output is True"""
 return 'Motif: ' +self.sequence+ ' Start: ' +str(self.start)+ ' End: ' +str(self.end)

 def gff(self, **keyargs):
 """This must return a gff-like tab-separated string. In this case, we are exploiting and
overriding the gff method of the gene class, which is a parent class for p2g_feature"""
 ## getting a gene object with the genomic coordinates of the protein motif. we use the gene
method subseq, which returns a subsequence of the parent gene. Indexes are adjusted for protein-
nucleotide conversion
 motif_gene_object= self.parent.subseq(start_subseq= (self.start- 1)* 3 + 1, \\
 length_subseq=(self.end-self.start+ 1)* 3, minimal=True)
 #now motif_gene_object has a .exons attributes with the genomic coordinates of the protein
motif. now we can use the native gff method of the obtained gene object
 return gene.gff(motif_gene_object, **keyargs)

 def reset(self):
 """ This method is called when the linked prediction is modified, to allow to recompute some or
all attributes of the feature. In this case, we are removing all features of this class, and
annotating them again with the same method used to add them in first place:
annotate_protein_motif"""
 ##removing instances of this class
 for index_to_remove in \\
 [i for i, f in enumerate(self.parent.features) if f.__class__ == protein_motif] [::- 1]: \\
 self.parent.features.pop(index_to_remove)
 #reannotating
 annotate_protein_motif(self.parent, silent=True)

38

The code contains the deÞnition of a class (protein_motif, including 5 methods), and the
function annotate_protein_motif. This function takes as input a p2ghit instance, analyzes it,
and if any protein motif is found, it populates its .features attribute with one protein_motif
instance for each motif found.
If this function is never run, the protein_motif class is unused. As mentioned within the
code, to activate it you should add this line to the main conÞguration Þle:

ACTION.post_filtering.annotate_motif = if x.filtered == 'kept': annotate_protein_motif(x)

In this way, the annotate_protein_motif will be run on every prediction that passed Þltering.
The protein motif C..C is deÞned as the class attribute motif, which is of type RegexObject
from the pattern matching module re. Inside the annotate_protein_motif function, it is
searched in the predicted protein sequence its dedicated method search. For each motif
found, a protein_motif instance is created, and the start and end positions of the match are
stored within this object; the protein sequence of the motif is also derived and stored. Once
the protein_motif instance is ready, it is appended to the .features list attribute of the input
p2ghit. Shortly after, this p2ghit reaches the database step, and its information is stored as
a sqlite entry. All the features associated to it are also stored in the database. For this
reason, the method dump_text is called on every feature instance. This method must
return a string containing all the information sufÞcient to then load it back. The method
load_dumped_text is its reverse, and is used during the output phase to load the dumped
information from the database into an empty protein_motif instance. An annotating function
(in this case annotation_protein_motif), and the p2g_feature class methods dump_text and
load_dumped_text are the minimal set of deÞnitions to make a functional feature. Other
attributes and methods can be used to output the features.To output features to the native
selenoproÞles format (.p2g, previously illustrated), the class attribute included_in_output
must be True, and the output method has to be deÞned. Features can be used for gff
output too, if the class attribute included_in_gff is set to True. In this case, it makes sense
to take advantage of the gene class, the parent of both classes p2ghit and p2g_feature.
The gene object is designed to represent a genomic interval, optionally composed by
multiple exons, on a certain chromosome (or scaffold) of a target Þle. It provides plenty of
methods such as for fasta fetching, cutting subsequences, computing overlaps, merging
gene structures and so on. Its native gff method returns one line for each exon in the
object, reporting its coordinates and optionally other attributes. In the example above, the
protein_motif class is not really used as a gene object, but just as a data container for the
attributes start, end, sequence: its attributes chromosome, strand, exons are not used.
Instead, the correct genomic coordinates of the protein motif are derived dynamically, and
added to output by overriding the native gff method of the class gene. For each motif
instance, its start and end positions relative to the full protein sequence are available.
Thus, the gene method subseq is used to derive the global genomic coordinates of the
motif. This function accepts as input a gene (self) object, a start position and a region
length, and returns another gene object, which contains a subset of the genomic intervals
in the self object. If the desired region spans any exon boundary, the returned object
contains multiple exons. In the code, the indexes are adjusted for converting protein-based
to nucleotide-based positions. Once the appropriate gene object containing the global
genomic coordinates for the motif is ready (motif_gene_object), the native gene class gff
method can be called.
Lastly, the method reset can be deÞned for custom features that have to be recomputed
when the predictions are modiÞed, by actions such as those explained in improving
predictions. In the example, the protein_motif instances are searched and expelled from
the features list of the p2ghit object for which the reset function is run. Then, the
annotating function annotate_protein_motif is run again.

39

Appendix 1: guide to profile building

Building good proÞles is of key importance for the accuracy of predictions. Their sensitivity
and speciÞcity mostly depends on their sequence variation (many representatives for a
family are better than few), and on the Þlters used. The best way to build good proÞles is to
progressively tune them by inspecting results. If you plan to search a large number of
genomes, it is a good routine to begin with just a few of them to get the proÞle right. First
thing on the checklist is the number of processed blast hits. If there are thousands, you
should tighten up the blast Þltering procedure. Then, ideally the genes in output should be
inspected, to see if they Þt your expectations.
You can parse log Þles for OK tags, indicating an output gene, or DROPPED tags, that
denotes predictions discarded by the Þlter, as well as for WARNING or ERROR tags to see
if everything went Þne. Then, the programs selenoproÞles_join_alignments and
selenoproÞles_tree_drawer constitute useful tools to collect and visualize results.
If there are too many genes in output, or too few, try and change the Þltering procedures.
By default, the stringency of a proÞle depends on the distribution of the AWSI scores of its
sequences, which measure how similar its sequences are among themselves. For each
candidate result, a AWSI score is computed and compared with the proÞle distribution,
computing a Z-score which must be greater than -3 to pass the Þlter. A simple way to
control the stringency of a proÞle is to alter the minimum Z-score of its Þltering procedure:

p2g_refiltering = x.awsi_filter(z_score=-5)

Using the AWSI Z-score, proÞles with very similar sequences accept only results which are
also very similar, while broader proÞles are more loosely Þltered. Thus, a good proÞle
should possess an amount of sequence variation which is not too low, nor too high. As a
rule of thumb, proÞles should contain more than ten sequences, but no more than a few
hundreds. The script selenoproÞles_build_proÞles can be used with option -r to remove
redundancy in an input alignment, in order to trim large proÞles to an acceptable number of
sequences. The same script can be used with option -d to inspect the AWSI distribution of
a proÞle. Generally the proÞles with AWSI cut-offs between 0.2 and 0.6 work reasonably
well. If the cut-off is higher, it means that the proÞle is extremely conserved, and thus will
output only extremely similar candidates. In this case stringency can be lowered by setting
manually a AWSI cut-off independent of the Z-score. The same awsi_Þlter function can be
used, as it accepts also a AWSI threshold: a candidate is accepted if either the AWSI or
the Z-score are higher than the respective thresholds.

p2g_refiltering = x.awsi_filter(awsi=0.5)

If the default AWSI cut-off is very low, it means that the proÞle is too broad, containing
sequences too dissimilar to each other. If large, the best strategy is generally to split the
input alignment into two or more proÞle alignments. Alternatively, one can try to keep the
proÞle as it is, and set an efÞcient Þlter using the tools explained in this manual.
A useful Þltering tool is the coverage: the prediction is mapped into the proÞle, and the
distance between its projected boundaries, divided by the proÞle alignment length gives
the coverage. A strict coverage Þlter excludes partial protein predictions:

p2g_refiltering = x.coverage()>0.75

40

When you are searching for protein families containing of common domains, you may want
to exclude the hits limited to these protein regions, using again the positions of the
prediction mapped to the proÞle:

p2g_refiltering = not x.is_contained_in_profile_range(1, 60) and not
 \\ x.is_contained_in_profile_range(100, 160)
The tag and GO score are powerful tools to allow to discriminate even between similar
protein families. Both tag and GO score procedures require a run of blastp against nr, and
thus are quite computationally expensive. For this reason, they should be used only for the
most difÞcult proÞles, for which the AWSI score is not enough to differentiate bona-Þde
genes and spurious hits. Even then, it is worth to additionally limit the number of results for
which this is run, for example checking AWSI. In this example, all results with AWSI
greater than 0.6 automatically pass the Þlter, while for those with AWSI between 0.2 and
0.6 the go_score is evaluated.

p2g_refiltering = x.awsi()>0.6 or (x.awsi()>0.2 and x.go_score()>0)

The tags should be written by searching the results with blastp against nr and looking at
protein titles. For GO scoring, the script selenoproÞles_build_proÞles provides a utility to
Þnd suitable terms, if the input proÞle sequences contain gi codes from ncbi nr. The GO
annotations for all proÞle sequences are fetched, and their number is compared with the
total number of proteins for each GO term.

41

Appendix 2: full list of operations

Load variables and functions:
! Read conÞguration Þle
! Read command line
! Check presence of target Þle and proÞles
! Check/convert species name
! Initialize results database if necessary
! Read active actions
! Read parameters
Load Þle provided with -add option
Load/compute length of all chromosomes in the target Þle
For each input proÞle:
! Load/compute clusters of proÞle alignment
! Check if results are already in database. If so, skipping all these steps:
! ! For each cluster:! !
! ! ! Run/load psitblastn
! ! ! For each blast hit in the blast output for this cluster:
! ! ! ! Transform it to have it relative to the master blast query
! ! ! ! Replace Ò*Ó with U in the target sequence if a UGA is aligned to a Sec position
! ! ! ! Perform pre_blast_Þlter actions
! ! ! ! Evaluate if blast hit passes blast Þltering. If it doesnÕt, discard it
! ! ! ! Perform post_blast actions
! ! If more than one cluster: merge overlapping blast hits from the different cluster searches
! ! Merge blast hits by colinearity
! ! For each blast hit: ! ! ! Perform post_blast_merge actions
! ! For each blast hit:! ! ! Run/load exonerate using blast hit as seed
! ! Discard duplicated exonerate hits and the blast hits associated to them
! ! For each blast hit:
! ! ! If an exonerate hit is available: run/load genewise using it as seed
! ! ! Else: run/load genewise using the blast hit as seed (genewise_to_be_sure routine)
! ! For each blast hit:
! ! ! For each non-empty prediction among blast, exonerate, genewise:
! ! ! ! Perform pre_choose actions
! ! Check if the choose prediction output Þle is already present. If not:
! ! ! ! Choose a prediction among the available ones: blast, exonerate, genewise
! ! ! ! Assign label to the chosen prediction
! ! ! Write choose prediction output Þle
! ! For each prediction:! ! ! Perform pre_Þltering actions
! ! Check if the Þltering predictions output Þle is already present. If not:
! ! ! Determining the overlap between predictions
! ! ! For each prediction:
! ! ! ! If the prediction overlaps an identical or smaller prediction, Þlter it as ÒredundantÓ
! ! ! ! Else, evaluating p2g_Þltering. If it doesnÕt pass, Þlter prediction as ÒÞlteredÓ
! ! ! ! Else, evaluating p2g_reÞltering. If it doesnÕt pass, Þlter prediction as ÒreÞlteredÓ
! ! ! ! Else: Þlter prediction as ÒkeptÓ
! ! ! Writing Þltering predictions output Þle
! ! For each prediction:! ! ! Perform post_Þltering actions
! ! Write predictions (including their Þltered state) in the database
Checking if results from different families overlap each other. Filtering those as ÒoverlappingÓ
For each input proÞle:
! Computing list of predictions to be output (based on output states / output Þlter)
! For each prediction to be output:
! ! Perform pre_output actions
! ! For each active output format:
! ! ! If the output Þle is not already present: write output Þle
! Write alignment output (with all predictions to be output along with proÞle sequences)

42

Appendix 3: links and references

SelenoproÞles:
Mariotti M, Guig— R. SelenoproÞles: proÞle-based scanning of eukaryotic genome
sequences for selenoprotein genes. Bioinformatics. 2010 Nov 1;26(21):2656-63
website: ! http://big.crg.cat/services/selenoproÞles

Blast:
Altschul SF, Madden TL, SchŠffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
Acids Res. 1997 Sep 1;25(17):3389-402. Review.
installation: ! ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/

Exonerate:
Slater GS, Birney E. Automated generation of heuristics for biological sequence
comparison. BMC Bioinformatics. 2005 Feb 15;6:31.
website:! http://www.ebi.ac.uk/~guy/exonerate/

Genewise:
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004 May;
14(5):988-95.
website:! http://www.ebi.ac.uk/Tools/Wise2/
installation: ! ftp://ftp.ebi.ac.uk/pub/software/unix/wise2/wise2.2.0.tar.gz

NCBI protein databases:
search:! http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&itool=toolbar
download: ! ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz

Gene ontology:
website;! http://www.geneontology.org/
The python code to query the gene ontology used in selenoproÞles is partially from:
http://gitorious.org/annotation/annotation/trees/master.
which is an adaptation by Fran•ois Serra of the code by Nepusz Tam‡s (thanks to both!)
https://github.com/ntamas/biopython

MAFFT alignment program:
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT.
Methods Mol Biol. 2009;537:39-64.
website:! http://mafft.cbrc.jp/alignment/software/

ETE2 tree visualization:
Huerta-Cepas J, Dopazo J, Gabald—n T. ETE: a python Environment for Tree Exploration.
BMC Bioinformatics 2010, 11:24.
website:! http://ete.cgenomics.org/;

Pylab graph visualization:
website:! http://www.scipy.org/PyLab

SECISearch3:
Mariotti M, Lobanov AV, Guig— R, Gladyshev VN. SECISearch3 and Seblastian: new tools
for prediction of SECIS elements and selenoproteins. Nucleic Acids Res. 2013; manuscript
in publication.
website: http://seblastian.crg.es/ or http://gladyshevlab.org/SelenoproteinPredictionServer/

43

Appendix 4: troubleshooting

HereÕs some errors that I experienced often installing selenoproÞles and the required slave
programs in different systems. If you have selenoproÞles errors which are not reported
here, contact me (see email address in the cover page).

Blast error

SelenoproÞles runs the blastpgp binary (to build a PSSM for each proÞle) through symbolic
links in its installation directory. In some systems this may cause this error:

[blastpgp] WARNING: Unable to open BLOSUM62
[blastpgp] WARNING: BlastScoreBlkMatFill returned non-zero status
[blastpgp] WARNING: SetUpBlastSearch failed.

Blast cannot Þnd the BLOSUM62 matrix, that is to say, its installation data folder. To Þx the
problem, edit (or create) the Þle ~/.ncbirc and add something like this to its content:

[NCBI]
data=/path_to_blast_installation/blast-2.2.2x/data

To know what is you blast installation folder, use the which command in bash (e.g. which
blastpgp) and follow possible symbolic links until you have something like:

/path_to_blast_installation/ncbi_blast-2.2.2x/bin/blastpgp

The data folder to insert in ~/.ncbirc is then the one shown above.

Genewise errors

Genewise is part of the wise2 package that can be found here (newer versions may exist):
ftp://ftp.ebi.ac.uk/pub/software/unix/wise2/wise2.2.0.tar.gz
In some systems, an error appears as you build the program with make:

sqio.c:232: error: conflicting types for 'getline'
/usr/include/stdio.h:653: note: previous declaration of 'getline' was here
make[1]: *** [sqio.o] Error 1
make[1]: Leaving directory `/PATH/src/HMMer2'
make: *** [realall] Error 2

The problem is in a function declaration (getline) in the Þle HMMer2/sqio.c, since this
function is already declared in many compilers. To solve it, type:

cd wise2.2.0/src/HMMer2/
sed 's/getline/getline_new/' sqio.c! > a &&! mv a sqio.c

Now get back to wise2.2.0/src/ and type make all. Take care of the Þnal message it shows:
you need to set the environmental variable WISECONFIGDIR to point to right place for
genewise to work. If you do not, you may have the following error:

Warning Error!!! Could not open human.gf as a genefrequency file
Warning Error!!! Could not read a GeneFrequency file in human.gf
Fatal Error!!! Could not build objects!

To take care of this, add to your bash conÞguration Þle ~/.bashrc something like this:

export WISECONFIGDIR=/path_to_installation/wise2.2.0/wisecfg/

so this will be executed for every bash instance you will run from now on.

44

http://ftp://ftp.ebi.ac.uk/pub/software/unix/wise2/wise2.2.0.tar.gz
http://ftp://ftp.ebi.ac.uk/pub/software/unix/wise2/wise2.2.0.tar.gz

